Cloud Computing Applications and Services (Aplicações e Serviços de Computação em Nuvem)

Diagnosing applications I/O behavior through system call observability

Tânia Esteves tania.c.araujo@inesctec.pt d12729@di.uminho.pt

2022/2023

Why the need for diagnosing applications I/O requests?

- Applications often exhibit inefficient or erroneous I/O behaviors that can compromise their performance, correctness and dependability:
 - o <u>costly access patterns</u> (*e.g.*, small-sized I/O requests or random accesses)
 - o <u>redundant operations</u> (e.g., unnecessarily re-opening and closing a given file)
 - <u>I/O contention</u> caused by having concurrent requests accessing shared storage resources
 - o <u>erroneous usage of I/O calls</u> (e.g., accessing wrong file offsets)
- Analyze large codebases manually (e.g., Redis has more than 100K LoC) to diagnose these inefficient patterns is a complex and time-consuming task.

DIO: A tool for diagnosing applications I/O behavior through system call observability

- DIO provides a full pipeline for capturing, analyzing, and visualizing I/O system calls made by applications.
- With DIO, users can observe:
 - inefficient use of system calls that lead to poor storage performance
 - unexpected file access patterns caused by the usage of high-level libraries, leading to redundant I/O calls
 - o resource contention in multi threaded I/O that leads to high tail latency for user workloads
 - erroneous file accesses that cause data loss

How DIO works

DIO in practice - Redis use case

DIO in practice - Redis log file access pattern

- Same sequence of system calls repeated over time: openat → lseek → fstat → write → close
- Many system calls per minute (up to 650)

DIO in practice - Redis log file access pattern

- Only one type of system call is repeated over time: writev
- Less system calls per minute (up to 130)

Future directions

- Analyze Ransomware attacks (ongoing research)
 - Observe system calls patterns of Ransomware attacks
 - Detect (and prevent) Ransomware attacks based on their system calls patterns
- Analyze I/O events at other OS levels
 - Explore eBPF to trace events at the Virtual File system or Cache layer
- Improve scalability and performance of DIO
 - Minimize the imposed overhead and capture more events
- Improve data analysis and correlation algorithms
 - Explore machine learning algorithms to automate the analysis process

Questions?