
Tânia Esteves
tania.c.araujo@inesctec.pt

d12729@di.uminho.pt

Diagnosing applications I/O behavior through 
system call observability

2022/2023

Cloud Computing Applications and Services
(Aplicações e Serviços de Computação em Nuvem)

mailto:tania.c.araujo@inesctec.pt


● Applications often exhibit inefficient or erroneous I/O behaviors that can 
compromise their performance, correctness and dependability:

○ costly access patterns (e.g., small-sized I/O requests or random accesses)
○ redundant operations (e.g., unnecessarily re-opening and closing a given file)
○ I/O contention caused by having concurrent requests accessing shared storage resources
○ erroneous usage of I/O calls (e.g., accessing wrong file offsets)

● Analyze large codebases manually (e.g., Redis has more than 100K LoC) to 
diagnose these inefficient patterns is a complex and time-consuming task. 

Why the need for diagnosing applications I/O requests?

2



● DIO provides a full pipeline for capturing, analyzing, and visualizing I/O 
system calls made by applications.

● With DIO, users can observe:
○ inefficient use of system calls that lead to poor storage performance
○ unexpected file access patterns caused by the usage of high-level libraries, leading to 

redundant I/O calls
○ resource contention in multi threaded I/O that leads to high tail latency for user workloads
○ erroneous file accesses that cause data loss

DIO: A tool for diagnosing applications I/O behavior 
through system call observability

3



②
Backend uses 

Elasticsearch to 
index and search 
over system calls

DIO

Application
(e.g., Redis) Tracer Backend Visualizer

Storage 
devices

How DIO works

System calls
(e.g., write, read)

①
Tracer uses the 

eBPF technology
to intercept 
system calls

③
Visualizer uses 
Kibana to build 

graphs and other 
representations

4



DIO in practice - Redis use case

5



DIO in practice - Redis log file access pattern

● Same sequence of system calls repeated over time: openat → lseek → fstat → write → close
● Many system calls per minute (up to 650)

openatlseekfstatwriteclose
Solution

● At the beginning:
○ open the log file and keep the resulting file descriptor

● At each log write:
○ use the opened file descriptor
○ use writev instead of write syscall

6



DIO in practice - Redis log file access pattern

● Only one type of system call is repeated over time: writev
● Less system calls per minute (up to 130)

writev writev writev

7



Future directions

● Analyze Ransomware attacks (ongoing research)
○ Observe system calls patterns of Ransomware attacks
○ Detect (and prevent) Ransomware attacks based on their system calls patterns

● Analyze I/O events at other OS levels
○ Explore eBPF to trace events at the Virtual File system or Cache layer

● Improve scalability and performance of DIO
○ Minimize the imposed overhead and capture more events

● Improve data analysis and correlation algorithms
○ Explore machine learning algorithms to automate the analysis process

8



Questions?

9


