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Why the need for diagnosing applications I/O requests?

e Applications often exhibit inefficient or erroneous I/O behaviors that can

compromise their performance, correctness and dependability:
o costly access patterns (e.g., small-sized 1/O requests or random accesses)
o redundant operations (e.g., unnecessarily re-opening and closing a given file)
o /O contention caused by having concurrent requests accessing shared storage resources
o erroneous usage of I/O calls (e.g., accessing wrong file offsets)

e Analyze large codebases manually (e.g., Redis has more than 100K LoC) to
diagnose these inefficient patterns is a complex and time-consuming task.



DIO: A tool for diagnosing applications |/O behavior

through system call observability

e DIO provides a full pipeline for capturing, analyzing, and visualizing I/O
system calls made by applications.

e \With DIO, users can observe:

@)

@)

inefficient use of system calls that lead to poor storage performance

unexpected file access patterns caused by the usage of high-level libraries, leading to
redundant I/O calls

resource contention in multi threaded 1/O that leads to high tail latency for user workloads
erroneous file accesses that cause data loss



How DIO works
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DIO in practice - Redis use case
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DIO in practice - Redis log file access pattern

|
Solution | close
e At the beginning: .

o open the log file and keep the resulting file descriptor I
e At each log write: I

o use the opened file descriptor p60 1,000

o use writev instead of write syscall I
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e Same sequence of system calls repeated over time: openat — Iseek — fstat — write — close
e Many system calls per minute (up to 650)



DIO in practice - Redis log file access pattern
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e Only one type of system call is repeated over time: writev
e Less system calls per minute (up to 130)



Future directions

e Analyze Ransomware attacks (ongoing research)
o Observe system calls patterns of Ransomware attacks
o Detect (and prevent) Ransomware attacks based on their system calls patterns

e Analyze I/O events at other OS levels
o Explore eBPF to trace events at the Virtual File system or Cache layer

e Improve scalability and performance of DIO
o Minimize the imposed overhead and capture more events

e Improve data analysis and correlation algorithms
o Explore machine learning algorithms to automate the analysis process



Questions?



