Cloud Computing Applications and Services
(Aplicacdes e Servicos de Computacao em Nuvem)

Diagnosing applications |/O behavior through
system call observability

Tania Esteves
tania.c.araujo@inesctec.pt
d12729@di.uminho.pt

2022/2023

INESC


mailto:tania.c.araujo@inesctec.pt

Why the need for diagnosing applications I/O requests?

e Applications often exhibit inefficient or erroneous I/O behaviors that can

compromise their performance, correctness and dependability:
o costly access patterns (e.g., small-sized 1/O requests or random accesses)
o redundant operations (e.g., unnecessarily re-opening and closing a given file)
o /O contention caused by having concurrent requests accessing shared storage resources
o erroneous usage of I/O calls (e.g., accessing wrong file offsets)

e Analyze large codebases manually (e.g., Redis has more than 100K LoC) to
diagnose these inefficient patterns is a complex and time-consuming task.



DIO: A tool for diagnosing applications |/O behavior

through system call observability

e DIO provides a full pipeline for capturing, analyzing, and visualizing I/O
system calls made by applications.

e \With DIO, users can observe:

@)

@)

inefficient use of system calls that lead to poor storage performance

unexpected file access patterns caused by the usage of high-level libraries, leading to
redundant I/O calls

resource contention in multi threaded 1/O that leads to high tail latency for user workloads
erroneous file accesses that cause data loss



How DIO works

;(Oépgp !';aet&?s'} Tracer Backend Visualizer
System calls
(e.q., write, read)
® @ ®
l | Tracer uses the Backend uses Visualizer uses
eBPF technology Elasticsearch to Kibana to build
Storage to intercept index and search graphs and other

devices system calls over system calls representations




DIO in practice - Redis use case

System calls Top system calls Total of Events ~ © Panel filters
System call name b Events v
» write 1,084,666
openat 0.3% openat 3,309
close 0.3%
fstat 0.3%
Iseek 0.3% close 3,308 1 09 ; 922
,Z_read 0% b ) b )
fstat 3,306
events
Iseek 3,282
read 27
fsync 24
Unique proces... Unique threads

24 24

processes

threads

Unique sessions Unique hosts
sessions
hosts
Unique comma... Unique files

@® Panel filters

1T 25

commands
files




DIO in practice - Redis log file access pattern

|
Solution | close
e At the beginning: .

o open the log file and keep the resulting file descriptor I
e At each log write: I

o use the opened file descriptor p60 1,000

o use writev instead of write syscall I

eeeeeeeeeeeeee
time per minute

e Same sequence of system calls repeated over time: openat — Iseek — fstat — write — close
e Many system calls per minute (up to 650)



DIO in practice - Redis log file access pattern

I ,r 1,600,000

writev wrltev wrltev )
B writev

!
i (T

200 600 800 1,000
executlon time (microsecond)

time per minute

® openat H @ average offset

e Only one type of system call is repeated over time: writev
e Less system calls per minute (up to 130)



Future directions

e Analyze Ransomware attacks (ongoing research)
o Observe system calls patterns of Ransomware attacks
o Detect (and prevent) Ransomware attacks based on their system calls patterns

e Analyze I/O events at other OS levels
o Explore eBPF to trace events at the Virtual File system or Cache layer

e Improve scalability and performance of DIO
o Minimize the imposed overhead and capture more events

e Improve data analysis and correlation algorithms
o Explore machine learning algorithms to automate the analysis process



Questions?



