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Abstract—Cryptographic ransomware attacks are constantly
evolving by obfuscating their distinctive features (e.g., I/O pat-
terns) to bypass detection mechanisms and to run unnoticed
at infected servers. Thus, efficiently exploring the I/O behavior
of ransomware families is crucial so that security analysts
and engineers can better understand these and, with such
knowledge, enhance existing detection methods. In this paper,
we propose CRIBA, an open-source framework that simplifies
the exploration, analysis, and comparison of I/O patterns for
Linux cryptographic ransomware. Our solution combines the
collection of comprehensive information about system calls issued
by ransomware samples, with a customizable and automated
analysis and visualization pipeline, including tailored correlation
algorithms and visualizations. Our study, including 5 Linux
ransomware families, shows that CRIBA provides comprehensive
insights about the I/O patterns of these attacks while aiding in
exploring common and differentiating traits across families.

Index Terms—cryptographic ransomware, I/O tracing and
analysis, operating systems

I. INTRODUCTION

Cryptographic ransomware is one of the most well-known

and damaging types of malware, which acts by encrypting data

at infected servers and then demanding a ransom in exchange

for the cryptographic key necessary to decrypt compromised

data to its original format [1], [2]. This malicious software is

now spread across distinct operating systems (OSs) other than

Windows, such as Android and Linux. As the latter OS is typi-

cally used by large institutions (i.e., governments, companies)

holding critical and private information, ransomware attacks

on their distributed infrastructures can have devastating effects,

as observed for the Colonial Pipeline, Quanta Computer, and

Konica Minolta attacks in 2021 [3]–[5].

Current ransomware detection and prevention tools are

mostly based on classification and machine learning algo-

rithms that can differentiate between malign and benign ap-

plications through key features, such as unique I/O patterns

exhibited by ransomware attacks (e.g., targeted files, API call

patterns) [6]–[8]. These features are distilled from information

collected statically from binary inspection or dynamically from

observing the I/O interaction of ransomware samples (i.e.,
binaries) with the OS. The latter is necessary for samples us-

ing concealment techniques (i.e., obfuscation, polymorphism,

encryption) that make binary inspection inefficient [2], [9].
However, given the sheer amount of cryptographic ran-

somware families, which are constantly evolving to bypass

detection mechanisms, it becomes challenging to understand

what I/O information needs to be collected dynamically at

runtime and used as a feature for classification purposes. For

this, security analysts and engineers require deep knowledge

of how ransomware families work and evolve over time.
Frameworks, such as Cuckoo [10] and Limon [11], pro-

vide sandbox environments to run ransomware samples and

output to users summaries of their suspicious activities. Since

these summaries are limited in terms of analysis scope, these

frameworks also output detailed execution logs (traces), which

are crucial for an in-depth exploration of ransomware’s I/O

patterns. However, we argue that this is a sub-optimal approach

as it leaves to users the inspection of large traces (i.e.,
containing thousands to millions of I/O events), which could

be automated with proper analysis and visualization tools.
Therefore, while focusing on the Linux OS, the main insight

of this paper is that to further comprehend the I/O behavior of

ransomware, one should leverage all the information collected

during its execution and automate its analysis and visualiza-

tion. Namely, by exploring the system calls (syscalls) used by

a ransomware sample, their arguments, and their contextual

information (e.g., process name, process ID, thread ID), one

would be able to obtain detailed information about the sample.

For example, it would be possible to i) observe how many

processes/threads are created and learn about their specializa-

tion (e.g., encrypt files, write ransom notes); ii) understand

how the infected file system is transversed and which files are

being targeted; iii) learn about specific I/O patterns done over

infected files (e.g., encryption key generation and persistence,

file’s extension renaming, targeted file offsets).
While this information is useful for analysts to better

understand ransomware attacks, compare distinct families and

observe their I/O patterns’ evolution, to implement such an

idea, one must address the following challenges:

(A) Non-intrusive and dynamic data collection: Most of the

available ransomware samples are packed binaries whose

46

2023 42nd International Symposium on Reliable Distributed Systems (SRDS)

2575-8462/23/$31.00 ©2023 IEEE
DOI 10.1109/SRDS60354.2023.00015



source code is undisclosed. Thus, the collection of rele-

vant information (tracing) should be dynamic (i.e., done

along with the sample’s execution) and non-intrusive (i.e.,
without requiring modifications to its source code).

(B) Comprehensive data: To enable a comprehensive explo-

ration and analysis of ransomware’s I/O behavior, col-

lected traces must include diverse and detailed informa-

tion regarding the sample’s interaction with the OS (e.g.,
process creation, syscall types, arguments, and context).

Such information can also be complemented with other

system metrics (e.g., CPU usage).

(C) Integrated analysis and visualization: The analysis

pipeline should be integrated with the data collection

phase while efficiently handling large volumes of traced

data (i.e., thousands to millions of I/O events), allowing

its storage, processing, and visualization.

(D) Automated analysis: Manually exploring traced data and

finding the most appropriate queries to observe specific

I/O patterns is a complex and time-consuming task, which

could be automated with tailored correlation algorithms.

(E) Pre-defined Visualizations: Users should have access to

pre-defined and customizable visualizations that provide

a human-readable and explainable way of exploring,

understanding, and summarizing the analysis findings.

(F) Comparision between families: To efficiently compare the

I/O behavior of different ransomware families, one must

store and index the data traced for each sample, correlate

such information, and create adequate visualizations that

help pinpoint their main similarities and differences.

The previous challenges are addressed with CRIBA, a tool

for capturing, analyzing, and visualizing the behavior of Linux

cryptographic ransomware. Briefly, CRIBA uses dynamic

analysis for collecting information about I/O syscalls issued by

ransomware samples along with other system metrics. Also, it

provides an integrated analysis and visualization pipeline that

employs several correlation algorithms and combines these

with custom visual representations to enable comprehensive

insights about the I/O patterns of ransomware attacks. In more

detail, the paper provides the following contributions:

• An open-source tool integrating the collection, analysis,

and visualization of execution traces from ransomware.

• Support for the collection and analysis of comprehensive

information about I/O syscalls (e.g., type, arguments),

their contextual information (e.g., process ID, offset), and

relation with other system metrics (e.g., CPU).

• Automated analysis capabilities through 6 algorithms that

ease the study and comparison of ransomware samples by

pinpointing their file system transversal, file access, and

file extension manipulation patterns.

• A pre-defined set of visualizations, organized into 7 dis-

tinct dashboards, for summarizing and exploring collected

information, and the outputs of the correlation algorithms,

in a human-readable and explainable fashion.

• A comprehensive analysis and comparison of 5 Linux

ransomware families that shows CRIBA’s capabilities.

The conducted experimental study shows that CRIBA

automates the analysis and observation of generic behavior

from ransomware samples (e.g., the number of processes,

type of syscalls, file system transversal). Further, it enables

the analysis and comparison of intrinsic and complex I/O

behavior (e.g., file access patterns, extension manipulation)

related to the creation of ransom notes, file encryption, and

evasion techniques used by each family. All artifacts discussed

in the paper, including CRIBA, datasets, scripts, and the

corresponding analysis and visualization outputs, are publicly

available at https://github.com/dsrhaslab/criba.

II. BACKGROUND

We now overview the workflow of cryptographic ran-

somware while highlighting some of its unique I/O features.

A. Main phases of ransomware attacks

Cryptographic ransomware typically acts in four

phases [12]. First, the attacker exploits system vulnerabilities

(e.g., kernel bugs) or uses social engineering techniques (e.g.,
phishing emails) to install a malicious sample at the victim’s

machine(s) (Infection phase). Once installed and running,

the sample establishes a connection with its Command and

Control (C&C) server to retrieve necessary information

for data encryption (e.g., encryption keys) and/or exfiltrate

information about the infected system (e.g., hostname,

hardware info) to the attacker (Communication with C&C
servers phase). Then, the ransomware transverses the files at

the infected server(s) and encrypts their data, blocking access

to these (Destruction phase). In the end, the ransomware

leaves a ransom note informing the victim about the attack

and disclosing payment instructions (Extortion phase).

B. Data encryption

Cryptographic ransomware typically follows a hybrid ap-

proach combining symmetric and asymmetric encryption

schemes [12]. Namely, it starts by locally creating a symmetric

key, usually a different key per infected file. It then reads

the file’s content and encrypts it with the generated key.

Symmetric key encryption schemes impose lower CPU load

and have faster encryption times than asymmetric ones [13].

To prevent the victim from discovering symmetric keys and

recovering the original files’ content, the ransomware encrypts

these with the attacker’s public key obtained, for instance,

during the Communication with C&C servers phase. The

encrypted file’s data and corresponding encrypted symmetric

key are both written to the targeted file, which is usually

renamed to include a new extension (e.g., .ecrypt in EREBUS).

Thus, to recover the original files, the victim first needs to

obtain the attacker’s private key and then use it to decrypt the

symmetric keys needed for the files’ data decryption.

C. Detection features

The ransomware actions to encrypt the victim’s files result

in intensive I/O patterns with several characteristics that devi-

ate from the normal behavior of benign applications:
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Fig. 1: CRIBA’s design and flow of events for the tracing and analysis phases.

• Directory search - typically, all directories at the infected

machine are transversed in search for files to encrypt [7].

• Files data access - encryption usually requires rewriting

the whole file’s data in a short time window [6].

• Number of storage operations - encrypting several files

results in a significant amount of storage I/O operations,

such as opening, reading, writing, and closing each file.

• Unknown file extensions - by changing the extension of

encrypted files, ransomware samples execute an abnormal

number of rename operations. Moreover, this results in

the appearance of new and unknown file extensions [7].

• CPU usage - by encrypting all files, the sample imposes

a high CPU load on the victim’s machine [13].

• Network communication - the communication with the

C&C usually translates into network operations targeting

unknown network domains [8].

These are some of the features that detection tools use to

identify the malicious activity of cryptographic ransomware.

D. Evasion techniques

Some families use evasion techniques to retard or avoid

being detected. For instance, many families include the public

encryption key within the binary to avoid communication

with the C&C [13]. Other families reduce CPU load and

encryption time, and hide I/O patterns by encrypting only

a subset of files on the infected machine. File selection can

be based on i) its extension (e.g., work-related documents

such as .pdf, .docx, .txt; or VM-related files such as vmdk,

.vmem, .vswp); ii) its size (e.g., larger files will most probably

contain important data); or iii) arbitrary. Some families also

limit the number of bytes to encrypt in each file, which is

usually sufficient to avoid recovering their full content.

With CRIBA, we aim to assist security analysts in exploring

and analyzing the I/O behavior of cryptographic ransomware

samples to understand better how they operate, identify and

refine key features for their detection, and learn about their

techniques used to evade detection tools.

III. DESIGN

Figure 1 depicts CRIBA’s architecture, which is built on top

of DIO, a generic tool for observing and diagnosing the I/O

interactions between applications and in-kernel POSIX storage

systems [14]. DIO provides modules for i) collecting infor-

mation about applications’ syscalls without requiring access

or modification to their source code (challenge §I-(A)); and

ii) storing, analyzing and visualizing the collected information

(challenge §I-(C)). Next, we overview DIO and highlight the

novel contributions introduced by CRIBA.

A. DIO

DIO’s design consists of a tracer component, which runs

collocated with the application being traced and records infor-

mation about its syscalls, and an analysis pipeline, which may

be deployed on a different server(s) and that allows storing,

querying, and visualizing the collected information.

The tracer uses the eBPF technology to non-intrusively

intercept storage-related syscalls made by the application.

In addition to collecting information about the syscalls (i.e.,
type, arguments, and return value), DIO’s tracer also collects

contextual information (i.e., timestamps, process, and thread

IDs, process name) and additional information from the kernel,

such as file types, file paths, and file offsets. Further, by parsing

and sending traced data directly to the analysis pipeline as

soon as it is collected, DIO provides near real-time analysis.

The analysis pipeline includes two main components. The

backend receives data collected by the tracer, indexes it, and

provides access to it through a querying API. The visualizer
is connected with the backend and provides users with the

mechanisms to summarize the data through customizable

visualizations (e.g., tables, histograms, time series plots).

B. CRIBA’s design

Although DIO’s analysis pipeline is useful for observing the

I/O behavior of applications, it still requires users to spend

significant time exploring and manually building/customizing

queries and visualizations to analyze collected traces.

CRIBA extends DIO to collect more information at the

tracing phase, including network operations and system’s
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resources metrics (challenge §I-(B)), and to automate the

analysis process by providing a set of correlation algorithms

and pre-defined visualizations (challenges I-(D),(E)) tailored

for the exploration of cryptographic ransomware. Next, we

highlight the modifications made to DIO’s original design and

describe the new components added (blue boxes at Figure 1).

SysTracer. DIO’s tracer is focused on the interception of

storage-related sycalls. To consider also network-related re-

quests, we modified this module to intercept 13 more syscalls

(e.g., connect, accept, send, receive). The full set of

supported syscalls is shown in Table V of Appendix A.

MetricMon. To obtain information about the system’s resource

usage, we introduced a new module for collecting statistics,

including CPU, memory, and disk usage.

DataParser. Ransomware samples must run in a controlled

environment (e.g., isolated VM) to avoid infecting the experi-

mental servers. Thus, SysTracer and MetricMon were config-

ured to save collected information to disk instead of sending

it directly to the analysis pipeline. Further, we introduced the

DataParser module that parses the trace files and forwards

these to the analysis pipeline.

Backend and correlation algorithms. The Backend compo-

nent, which may be deployed on separate server(s), is identical

to the one offered in DIO and provides the functionalities of

storage and exploration of collected information. However, to

ease the analysis of cryptographic ransomware, we developed

several new correlation algorithms that query the Backend,

analyze and correlate queried data, and send the analysis

results back to the Backend. As further explained in §III-D

and demonstrated in §V, these algorithms provide relevant

information to understand how ransomware behaves and to

find interesting and distinctive I/O patterns. Further, our design

is extensible, enabling users to develop other correlation

algorithms that may suit their analysis goals.

Visualizer. The Visualizer component, which is also based on

DIO, was extended to include visual representations tailored

for observing ransomware’s analysis findings (e.g., for the

output of correlation algorithms) thus, simplifying users’ ex-

ploration and making it more explainable. Particularly, we built

several dashboards that allow observing general statistics about

the traced execution (e.g., execution time, number of processes

and threads, number and type of syscalls) and explore each

of these in more detail (e.g., most accessed files, file system

transversal, sequence of syscalls per files). Each dashboard

is mentioned explicitly in §V while discussing the analysis

findings contained in it. Also, our design is extensible as users

can create new visualizations based on their analysis needs.

C. CRIBA’s workflow

As shown in Figure 1, CRIBA’s components are executed

in two separate phases: i) the tracing phase, where information

from the ransomware execution is collected; and ii) the anal-

ysis phase, where collected data is analyzed and visualized.

In the tracing phase, the ransomware sample is executed in

a controlled environment along with SysTracer that intercepts

its I/O syscalls, and MetricsMon that monitors system statis-

tics ( 1 ). When the ransomware finishes its execution, these

components’ output files are extracted from the controlled

environment ( 2 ) to initiate the analysis process.

In the analysis phase, the DataParser is used to read the

tracing output files ( 3 ) and forward these to the Backend ( 4 ).

The latter persists and indexes collected data ( 5 ) and provides

access to it through a querying API. Meanwhile, users can

execute the provided correlation algorithms ( 6 ) and access

the Visualizer dashboards ( 7 ) to visually explore the output

of these and other information contained at the indexed data.

D. Correlation Algorithms

Taking into account the ransomware features discussed

in §II, we developed six algorithms that ease their analysis.

UNExt. The UNExt algorithm extracts the file name and

extension from the file paths targeted by traced syscall events.

Specifically, for every event accessing1 a file path (e.g.,
read, write, stat), the algorithm splits the full path

(e.g., /files/example.txt) to obtain the file name (e.g.,
example.txt) and the file extension (e.g., .txt). This

algorithm is implemented as a search and update query that

is fully executed at the Backend. With its output, users can

explore, at the Visualizer, the file names and extensions

accessed by ransomware samples.

DsetU. The DsetU algorithm compares the list of file paths

accessed by the ransomware sample with the full list of file

paths contained in a given dataset collection, provided as input

by the user (e.g., the experimental dataset described in §IV).

The algorithm then outputs to the Backend which dataset’s

files and extensions were accessed by the ransomware. This

output can then be explored with the Visualizer to uncover

samples targeting specific files and extensions.

Transversals. The Transversals algorithm determines the or-

der in which ransomware threads transverse the file system,

namely Breadth First Search (BFS), Depth First Search (DFS),

or unknown. Alg. III.1 shows the algorithm for identifying

DFS. By analyzing opened files, it builds a file tree (L2) and

obtains an order – dfsOrder – in which the files would have

been visited with DFS (L3). Then it correlates the actual file

opening order done by the thread with dfsOrder (L4-L8).

Next, it builds a SegmentTree structure [15] (L9) to efficiently

verify if external files were visited while transversing a given

subtree (L10-L15), meaning that the thread is not doing DFS.

Note that the algorithm tolerates different access orders to files

on the same directory (e.g., alphabetical, creation time, etc.).
The search type done by each thread, along with the

information containing opened files and folders, are sent to the

Backend and can be explored at the Visualizer (e.g., through

a tree representation as shown in Figure 9 in Appendix D).

FnGram. The FnGram algorithm computes the n-grams col-

locations for the files accessed by a ransomware sample over

time. Specifically, the algorithm queries the Backend to obtain

1In the paper, file access means at least one syscall is done over the file.
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Algorithm III.1: DFS identification algorithm.

Input: Files opened over time (fpaths)

Output: True if DFS was observed

1 Function ISDFS(fpaths) is
2 tree← buildFileTree(fpaths)

3 dfsOrder ← transverseDFS(tree)

4 list← []
5 i← 0
6 for file ∈ fpaths do
7 idx← dfsOrder[file]
8 list[idx] = i
9 i+ = 1

10 st← buildSegmentTree(list)
11 for file ∈ fpaths do
12 a← st.getMaxElemInsideSubtree()

13 b← st.getMinElemOusideSubtree()

14 st.remove(file)

15 if a > b then
16 return false

17 return true

a list of the file paths accessed by each thread. Then, it com-

putes and sends back to the Backend the bigrams, trigrams,

and quadgrams for that input list. With this information, it

is possible to depict dependencies between file accesses (e.g.,
the trigram (A.txt, B.txt, C.txt) shows that B.txt was

accessed after A.txt and before C.txt).

FSysSeq. The FSysSeq algorithm computes the sequence of

consecutive unique syscalls done by ransomware threads to

all files. First, for each file, the algorithm queries the Backend
to obtain the list of syscalls (sorted by time). As depicted

in Alg. III.2, each syscall in the list is translated to a tag

(L5) of two letters (according to Table V in Appendix A)

to reduce the length of the final sequence, while subse-

quent syscalls of the same type are reduced to a single

one (L6-L7). For example, the list [open, read, read,

lseek, write, write, close, rename] is reduced to

“OP→RD→LS→WR→CL→RN”. With these sequences, one is

able to learn how ransomware threads access files and observe

similar patterns between files (e.g., identical sequences for

ransom notes as shown in §V-B).

tfidfFam. The tfidfFam algorithm eases the comparison be-

tween distinct ransomware families. Specifically, for each

family, the algorithm requests from the Backend all the values

observed for a given category (e.g., syscall type). These values

are passed as input to the Term Frequency-Inverse Document

Frequency (TF-IDF) algorithm. The latter is a feature selection

technique, often used by ransomware detection tools [16]–

[18], that outputs a numerical statistic showing the relevance

of each value (e.g., relevance of read syscalls for the EREBUS

sample). Then, the cosine similarity is applied to the output

of TF-IDF to have a single metric of comparison between

Algorithm III.2: FSysSeq correlation algorithm.

Input: Syscalls for a given file over time (syscalls)

Output: Syscall sequence (sequence)

1 Function COMPUTESYSSEQ(syscalls) is
2 sequence← []
3 prev tag ← NULL

4 for s← syscalls do
5 tag ← get tag(s)

6 if prev tag = NULL or prev tag �= tag then
7 sequence.append(tag)

8 prev tag ← tag

9 return sequence

families according to their most relevant values.

By sending back to the Backend the TF-IDF output, we

allow users to easily observe the most relevant values per fam-

ily and for a given category. By sending the cosine similarity

results, we allow users to understand how similar/distinct the

ransomware families are. We apply this algorithm to three

categories (i.e. syscall type, file paths, and file extensions).

E. Implementation

SysTracer extends DIO’s tracer and is implemented in Go

while resorting to the BPF Compiler Collection (BCC) frame-

work through the gobpf lib (v0.2.0) to intercept applications’

syscalls. The Backend, Visualizer and MetricMon components

are provided by instances of Elasticsearch [19], Kibana [20],

and Metricbeat [21], respectively. The DataParser and the

correlation algorithms are implemented in Python and interact

with the Elasticsearch instance (i.e., index, update, and query).

The dashboards with pre-defined visualizations are provided

along with CRIBA and include representations (e.g., Figure 4)

developed using the Vega-Lite [22] grammar.

IV. EVALUATION METHODOLOGY

Our experimental evaluation shows how CRIBA automates

and eases the work for users when: i) exploring and un-

derstanding both general and specific behaviors exhibited by

ransomware samples; and ii) comparing different families to

find common and distinct patterns across them.

A. Ransomware families

The experiments consider 5 Linux ransomware families,

which were chosen based on their popularity and distinct traits.

• EREBUS emerged in 2016 and is known for infecting

thousands of computers and servers. A notorious example

is the attack on the Linux infrastructure of a South Korean

web hosting company in 2017 [23].

• REVIL is a high-profile ransomware family discovered

in 2019 that reached its peak activity in 2021. It targeted

both widely known public figures and companies, includ-

ing Quanta Computer, a supplier of Apple [4].
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TABLE I: Execution time, process creation, accessed files and issued syscalls statistics for the ransomware families.

Process Accesses SyscallsFamily Execution
time (min) PIDs TIDs Paths Extensions Transversal Types Events Data / Metadata Storage / Network

AVOSLOCKER 1.481 1 2 11 646 3 044 DFS 8 134 985 34.13% / 65.87% 100% / 0%
RANSOMEXX 3.126 1 5 85 583 19 341 DFS 9 703 575 31.99% / 68.01% 100% / 0%
REVIL 8.719 12 13 39 384 8 275 DFS 9 774 007 41.83% / 58.17% 100% / 0%
EREBUS 10.361 3 12 107 307 8 482 - 17 1 257 238 26.86% / 73.14% 99.96% / 0.04%
DARKSIDE 0.386 1 6 11 244 12 DFS 19 21 070 25.06% / 74.94% 99.79% / 0.21%

• AVOSLOCKER released a Linux variant in 2021. This

family has been targeting critical infrastructures in coun-

tries such as the US, Canada, and UK [24].

• RANSOMEXX is a recent ransomware targeting Linux

infrastructures. The Texas Department of Transportation,

Konica Minolta, and Scottish Mental Health Charity were

attacked by this malware between 2020 and 2022 [5].

• DARKSIDE emerged in 2020 and was used to launch

a global campaign infecting targets in 15 countries and

multiple industry sectors [25]. It is known for, in 2021,

targeting Colonial Pipeline, a company responsible for

half of the fuel supply of the US East Coast [3].

As some ransomware samples require defining the number

of encryption threads and the targeted file system directory

path, we configured all samples to use 1 encryption thread and

to target the dataset discussed next. For EREBUS, which does

not allow specifying these two arguments, and for DARKSIDE,

which does not allow changing the number of threads, we used

their default configurations. Table VI in Appendix C shows the

SHA256 hashes and execution commands for each sample.

B. File dataset

As in previous work [26], [27], the Impressions frame-

work [28] was used to generate a synthetic dataset exhibiting a

statistically accurate file system image with realistic metadata

and content. The dataset, with 9.4 GiB, includes 35 418 files,

with sizes ranging from 0 B to 800 MiBs. Files are spread

across 3 510 directories with an average tree depth of 12 levels.

DARKSIDE encrypts only specific file extensions (.vmem,

.vswp, .log and .vmdk) that are not generated with the Im-
pressions framework. Thus, we developed a script to change

the file names of some dataset files, considering both small

and large-sized files, to include these. The final dataset used

in the experiments has 8 267 unique file extensions. Further

information about the distribution of files’ sizes and extensions

is shown in Figures 7 and 8 in Appendix B.

C. Experimental Setup

Our testbed includes two environments. The ransomware

samples and CRIBA’s SysTracer and MetricsMon are exe-

cuted in a controlled environment. Namely, they run inside a

Virtual Machine (VM) configured with 2 GiB of RAM, 2 CPU

cores, and a disk partition of 64 GiB. The VM is deployed on

a server equipped with an 8-core Intel i9-9880H, 16 GiB of

memory, and a 500 GiB SSD NVMe. The host OS runs macOS
Big Sur 11.7.6 while the guest OS runs Ubuntu 22.04 LTS with

TABLE II: Top 3 syscall types issued per ransomware family.

FamilySyscall
AVOSLOCKER RANSOMEXX REVIL EREBUS DARKSIDE

#1
lseek

(23.942%)
lseek

(20.280%)
read

(28.385%)
read

(19.013%)
stat

(53.711%)

#2
read

(20.589%)
write

(16.340%)
lseek

(20.084%)
stat

(15.871%)
read

(10.332%)

#3
fstat

(16.755%)
read

(15.648%)
close

(14.226%)
openat

(14.671%)
writev

(10.190%)

kernel 5.15.0. The VM image is reverted to a previous (and

clean) snapshot every time a ransomware sample is executed.

CRIBA’s Backend and Visualizer components, as well as

the correlation algorithms, run at the analysis environment,

which consists of a separate server equipped with a 6-core

Intel i5-9500, 16 GiB of memory and a 250 GiB NVMe SSD,

and running Ubuntu 20.04 LTS with kernel 5.4.0.

The execution time for the full analysis workflow, including

the tracing, pre-processing, and loading of traced data (using

CRIBA’s DataParser), and execution of all correlation algo-

rithms, took, on average, ≈19 minutes per family.

V. EVALUATION RESULTS

We now discuss the main analysis findings and takeaways

from the experimental study. We start by introducing general

statistics for the different families (§V-A), which are then

further explored and justified with a more in-depth observation

of specific features of ransomware samples, including their

ransom notes creation (§V-B), data encryption (§V-C) and

evasion techniques (§V-D). Finally, we highlight the main

similarities and differences found across families (§V-E).

A. Overview

Tables I and II show general statistics provided by CRIBA

for the 5 ransomware families considered in our experiments.

Observation 1. Families exhibit significantly different execu-

tion times, with DARKSIDE running in less than 1 minute and

EREBUS taking more than 10 minutes.

Observation 2. Most families use a single process, except for

EREBUS (3 processes) and REVIL (12 processes). The number

of threads ranges from 2 in AVOSLOCKER to 13 in REVIL.

Observation 3. AVOSLOCKER and DARKSIDE access fewer

unique file system paths and file extensions than the other sam-

ples. EREBUS has the highest number of file accesses, while

RANSOMEXX accesses the highest number of distinct file

extensions. When considering only accesses to the dataset’s
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Fig. 2: Aggregated number of operations, separated by syscall type, for three distinct threads launched by REVIL.

files, AVOSLOCKER and DARKSIDE only access ≈30% of

these, while RANSOMEXX accesses almost 93%. REVIL and

EREBUS are the only ones accessing all files in the dataset.

Observation 4. Except for EREBUS, all families perform a

depth-first search (DFS) to transverse the dataset’s directory

tree. This search is done by 2 threads in AVOSLOCKER,

REVIL and DARKSIDE, and 5 threads in RANSOMEXX. Also,

all samples access system directories besides the dataset’s ones

(e.g., /usr, /proc, /dev).

Observation 5. DARKSIDE uses a wider range of different

syscall types (e.g., stat, read, writev) but performs fewer

operations in total than the other families. AVOSLOCKER

issues fewer types of syscalls, while EREBUS performs more

than 1 million I/O operations.

Observation 6. The majority of issued syscalls are metadata-

related. Namely, lseek, stat, and fstat are widely used

by all families. In DARKSIDE, half of the total issued I/O

requests correspond to stat syscalls.

Observation 7. EREBUS and DARKSIDE are the only sam-

ples issuing network-related syscalls, such as connect or

recvfrom. This indicates that these samples may be the only

ones communicating with C&C servers.

Observation 8. For all families, the distribution of I/O load

(i.e., amount of requests) per thread varies. For instance,

when considering the 13 threads created by REVIL, only

two do syscalls throughout the whole execution. Moreover, as

depicted in Figure 2, most I/O requests are done by a single

thread (TID 1814 issues 98.027% of the syscalls, while TID

1777 executes only 1.822%). The remaining threads perform

fewer I/O requests and only at the beginning of the sample’s

execution (e.g., TID 1809 does 0.132% of the syscalls).

Takeaways. General statistics show that ransomware
families exhibit different patterns in terms of execution
time, process and thread creation, and accessed files and
extensions. Metadata-related storage operations are the
most predominant type of issued syscall, while network-
related calls are only issued by a few families. Most
families transverse the file system in a DFS fashion.

TABLE III: Syscall sequences for ransom notes per family.

Family Syscall sequence

AVOSLOCKER README FOR RESTORE: OP→ST→WR→CL
RANSOMEXX !NEWS FOR STJ!.txt: ST→OP→ST→WR→CL

REVIL qoxaq-readme.txt: OP→ST→WR→CL
DECRYPT FILE.html: OP→WR→CL→RN→OP→WR→CL

EREBUS DECRYPT FILE.txt: OP→WR→CL

DARKSIDE
darkside readme.txt: (1): ST (2): ST→OP→WR→CL

(3): ST→OP→WR→CL→ST

CRIBA’s role. The aforementioned statistics were auto-
matically computed by CRIBA, with the UNExt, DsetU
and Transversals algorithms, and explored through its
Generic Overview and Directory Transversal dashboards.

B. Ransom notes

Table III shows the sequences of syscalls done for ransom

notes by each ransomware family.

Observation 9. While the file name used for ransom notes

changes across families, each sample reuses the same name

for all written notes, most of which use the .txt extension.

In AVOSLOCKER, no extension is used, while EREBUS creates

an additional note with an .html extension.

Observation 10. DARKSIDE creates 274 ransom notes, while

RANSOMEXX, REVIL and EREBUS create more than 3500.

EREBUS creates more ransom notes with the .html extension

(8430) than with the .txt one (4000).

Observation 11. While DARKSIDE delegates the creation of

ransom notes to two separate threads, the others use only one.

Observation 12. Most families exhibit a unique sequence

of syscalls for ransom notes. Contrarily, DARKSIDE does

3 different sequences, which is caused by having multiple

threads creating these. Namely, each thread starts by perform-

ing a stat syscall to verify if the targeted directory already

contains a note, writing a new one only if this is not the case.

Observation 13. All families perform open, write and

close syscalls over each ransom note file. Stat is also

significantly used (except for EREBUS), but its amount and

placement, in the sequence of syscalls issued per ransom

note, varies (i.e., AVOSLOCKER and REVIL only perform
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TABLE IV: Syscall sequences issued per family over a small

(F31277.jsd.vswp) and large (F10573.bqt.vmdk) dataset file.

Syscall sequenceFamily F31277.jsd.vswp (222 034 bytes) F10573.bqt.vmdk (≈32 MiB)

AVOSLOCKER
OP→ST→LS→RD→

LS→RD→LS→WR→CL→RN
OP→ST→LS→RD→

(LS→RD→LS→WR)x4→CL→RN
RANSOMEXX OP→ST→LS→RD→WR→LS→RD→LS→WR→CL→RN

REVIL
OP→LS→ST→RD→LS→
WR→LS→RD→WR→CL→RN

OP→LS→ST→RD→LS→WR→
(LS→RD→LS→WR)32→
LS→RD→WR→CL→RN

EREBUS ST

original file: ST→RN
renamed file: ST→OP→RD→LS→
RD→WR→LS→WR→(LS→RD)x3→

LS→WR→(RD→WR)x64→CL

DARKSIDE ST
ST→OP→(RD→WR)x32→
CL→OP→LS→WR→CL→RN

stat before opening the file, while RANSOMEXX performs

it before and after opening the file).

Observation 14. The syscall sequence done for EREBUS’s

.html ransom notes includes a rename (RN) operation. By

further analyzing the arguments of the syscalls issued to these

files, one observes that EREBUS first creates and writes a file

named _DECRYPT_FILE.html. Later, it renames the file to

index.html, and creates another _DECRYPT_FILE.html
file, in the same folder, with the same content.

Takeaways. The 5 ransomware families share similarities
regarding the creation of ransom notes, such as reusing
the same name for files placed across different directories
and using almost the same set of syscalls. The obser-
vations also show distinct patterns, such as the number
of ransom notes created by each family, the use of two
distinct ransom notes by EREBUS, and the different syscall
sequences performed by DARKSIDE.

CRIBA’s role. The previous findings were obtained
through CRIBA’s UNext, FSysSeq, FnGrams, and
Transversals algorithms, and by exploring their output
with the File Name and Extensions, Syscall Sequences,
File Ngrams and Directory Transversal dashboards.

C. Dataset’s Files Access and Encryption

Table IV shows syscall sequences done over a small

(F31277.jsd.vswp) and large (F10573.bqt.vmdk) dataset file.

Observation 15. The number of unique sequences of syscalls,

considering all dataset files, varies from 7 (REVIL) to 28

(RANSOMEXX). These differ depending on specific file char-

acteristics (e.g., file size). For instance, RANSOMEXX uses the

same sequence for the small and the large file examples, while

the other families use different sequences. For AVOSLOCKER

and REVIL, the difference is mostly on the amount of lseek,

read, and write operations done to each file.

Observation 16. By inspecting the thread ID associated with

each sequence, one can conclude that AVOSLOCKER, REVIL,

and EREBUS use 1 thread for accessing files, while DARKSIDE

uses 2 and RANSOMEXX uses 4. Further, except for EREBUS

and DARKSIDE, the creation of ransom notes and the access

to dataset files are delegated to distinct threads.

Observation 17. Some of the observed sequences only include

the stat syscall. This suggests that some files are not being

processed (e.g., encrypted). In fact, through CRIBA, we can

conclude that EREBUS accesses all dataset’s files but only

processes 33.82% of these. Also, from the 30% of dataset’s

files accessed by DARKSIDE, only 3.48% are being processed.

Observation 18. EREBUS is the only sample accessing and

encrypting files from all directories of the file system, which

explains the high number of accessed files (Observation 3).

Observation 19. When inspecting the offset of lseek and

write requests for other sequences, one can observe inter-

esting patterns associated with the writing of encryption keys

to infected files. Namely, RANSOMEXX starts by jumping to

the end of the infected file (ST→LS→RD), writing the key

(WR), and then jumping back to the beginning of the file to

initiate the encryption process (LS). AVOSLOCKER, REVIL,

and DARKSIDE only write the key after encrypting the file’s

content. The latter reopens the file, jumps to its end, and then

performs the key write operation (OP→LS→WR→CL). ERE-

BUS does not exhibit the previous file offset access patterns,

as it writes the encryption key at the beginning of files before

encrypting their content [23].

Observation 20. REVIL and EREBUS always read

content from the /dev/urandom file before, or in

between, consecutive accesses to each dataset file. The

n-grams (/dev/urandom, .../F3737.vva.vmem,

/dev/urandom, .../F10573.bqt.vmdk) from

REVIL and (.../F10573.bqt.vmdk, /dev/urandom,

.../F10573.bqt.vmdk) from EREBUS show these two

patterns. DARKSIDE also reads from the /dev/urandom
file multiple times. These accesses are probably due to the

generation of randomness for creating encryption keys.

Observation 21. Most of the ransomware families operate

directly over the original dataset file and, after encrypting

it, rename the file to add their own extension (note the RN
operation at the end of most sequences). However, EREBUS

starts by first renaming the original file to a random name (e.g.,
F10573.bqt.vmdk → CA2065AE397D85C1.ecrypt)

and only then encrypts its content.

Observation 22. While most families add a constant file exten-

sion to encrypted files (e.g., .avoslinux for AVOSLOCKER,

.ecrypt for EREBUS), RANSOMEXX generates a differ-

ent extension for each file, composed of a constant pre-

fix (.stj888-) concatenated with a random suffix. Inter-

estingly, some files have two distinct extensions (e.g., the

large file has the extensions: .stj888-36acf3f1 and

.stj888-40aa97db). By observing in more detail the

syscalls issued for the large file by thread, as depicted in Fig-

ure 3, it is possible to see two threads simultaneously opening,

reading, writing, and renaming the same file. This concurrent

pattern can lead to data corruption and irrecoverable files.
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Fig. 3: Syscalls issued over time by RANSOMEXX’s encryp-

tion threads to file F10573.bqt.vmdk.

Fig. 4: File offsets accessed per family when reading and

writing file F10573.bqt.vmdk.

Takeaways. The sequences of syscalls change according
to the targeted files and the ransomware family. Different
patterns are also observed regarding the timing and
placement of encryption keys at infected files and for
the extensions chosen by each family when renaming en-
crypted files. Interestingly, REVIL, EREBUS, and DARK-

SIDE use /dev/urandom to generate randomness. In
RANSOMEXX, two threads are concurrently encrypting
the same file, a pattern that may lead to corrupted files.

CRIBA’s role. Results were obtained with the UNext,
DsetU, FSysSeq, FnGram and Transversals algorithms,
and observed with the Syscall Sequences, File Ngrams,
File Offsets and Directory Transversal dashboards.

D. Dataset’s Files Selection and Evasion Techniques

Figure 4 shows the offsets accessed when reading and

writing to the large file (i.e., F10573.bqt.vmdk).

Observation 23. REVIL and EREBUS read and overwrite the

full file’s content (i.e., offsets are fully accessed across the

whole file ≈ 32.33MiB). DARKSIDE encrypts most of the

file’s content but leaves the last (incomplete) block in plaintext.

Also, REVIL and DARKSIDE use blocks of 1 MiB to read and

write the file, while EREBUS uses blocks of 512 KiB.

Observation 24. For every 10.78 MiB of content belonging

to a given file, AVOSLOCKER only encrypts 0.98 MiB. For

the F10573.bqt.vmdk file, RANSOMEXX only encrypts

the first 1 MiB block. However, CRIBA shows that the latter

behavior changes across files and, for other files, this sample

sparsely encrypts multiple 1 MiB blocks across the entire file.

Observation 25. Observations 3 and 17 show that, except for

REVIL, all other families avoid encrypting the full dataset.

When correlating the files accessed by DARKSIDE with the

dataset’s file sizes and extensions, we observe that it only

processes 4 types of extensions (i.e., .vmem, .vswp, .log
and .vmdk) and that only considers files with a size larger

than 1MiB, amounting to 381 files.

Observation 26. As depicted in Figure 5, DARKSIDE and

RANSOMEXX have the highest bursts of CPU usage (94%

and 86%, respectively), but for a short time, given the multiple

threads doing data encryption. REVIL exhibits a CPU usage of

approx 55%, for a larger time period, given its single thread

encrypting the full dataset’s content.

Takeaways. Only REVIL accesses all dataset files and
overwrites their full content. The other families target
specific file extensions (e.g., DARKSIDE) and/or do not
process the full content of files (e.g., AVOSLOCKER).
These patterns enable faster execution and lower CPU
usage and are used to deceive detection tools (see §II-D).

CRIBA’s role. DsetU and UNExt algorithms, along with
the File Offsets, Directory Transversals, and Resource Us-
age dashboards were used for the previous observations.

E. Families Similarity and Summary
Figure 6 highlights the similarity across families for the type

of syscalls done and the file extensions and names accessed.
For the type of syscalls, DARKSIDE is the most unique sam-

ple, sharing less than 22% of similarity with AVOSLOCKER

and REVIL, and less than 55% with EREBUS and RAN-

SOMEXX. This is due to DARKSIDE using more types of

syscalls, including network calls (Observations 5 and 7).
When looking at accessed file extensions, EREBUS is the

sample with the highest deviation, being only 42.8% similar

to REVIL. This is explained by its distinctive behavior of en-

crypting files only after adding the .ecrypt extension (Observa-
tion 21), and by the number of accesses to /dev/urandom,

which does not have an extension (Observation 20).
As for file names, the families are very dissimilar, with only

EREBUS, REVIL, and DARKSIDE sharing similarities (94.5%

between the first two and up to 45.9% with the latter). The

similarity between these 3 families results from their accesses

to /dev/urandom (Observation 20).
The results discussed in this section show that CRIBA

provides comprehensive analysis and comparison of crypto-

graphic ransomware samples. Also, it shows that ransomware
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Fig. 5: CPU usage per ransomware family.
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Fig. 6: Heatmaps comparing the families regarding the type of issued syscalls, and accessed file extensions and names.

analyses must consider different features to provide a clear un-

derstanding of the samples’ intrinsic and complex behaviors.

VI. RELATED WORK

Behavior analysis sandboxes provide a controlled envi-

ronment for running malware samples and extracting their

behavioral information [10], [11], [29]. These tools monitor

the memory state, network traffic, and API calls done by

samples and generate a report highlighting their main (and

suspicious) activities. Raw logs are also outputted so that users

can further analyze specific features not included in the report.

Leaving the parsing, analysis, and visualization of infor-

mation contained in raw logs for users is a complex and

time-consuming endeavor. Therefore, CRIBA can comple-

ment these tools with the mechanisms for automating the

aforementioned tasks. For instance, security analysts can use

tools like Cuckoo Sandbox [10] to perform a first analysis

of multiple malware and benign applications. Based on their

reports, they can select the samples that need a more in-depth

analysis and use our tool to ease such a process.

Ransomware detection tools also rely on dynamic analysis

for understanding the key features that identify ransomware

samples exhibiting malicious activity [6]–[8], [17], [30]–[33].

These tools typically resort to the aforementioned analysis

sandboxes to collect information from the samples’ execution

and then use feature selection techniques to extract the most

relevant features for malware detection [34], [35].

As discussed in VizMal [36], since the purpose of detection

tools is to classify applications as malign or benign, they

do not provide further information for exploring and under-

standing the internal behavior of ransomware samples. VizMal

introduces a new visualization to highlight potential malicious

behavior at specific portions of the execution traces of Android

ransomware samples. Nonetheless, VizMal is limited to this

single visualization, and therefore, it cannot provide compre-

hensive information about ransomware’s I/O behavior.

CRIBA is not a tool for ransomware detection, instead,

its main goal is to provide an integrated tracing and analysis

pipeline optimized for collecting, exploring, and visualizing a

vast amount of I/O information about ransomware samples.

With this information and the aid of custom correlation algo-

rithms and visualizations, CRIBA automates the observation

of interesting I/O patterns for ransom note creation (§V-B),

data encryption (§V-C) and evasion techniques (§V-D) used by

ransomware samples. Also, it enables the comparison of dif-

ferent samples from either the same or different families while

pinpointing their main similarities and differences (§V-E).

VII. CONCLUSION

We present CRIBA, a tool for simplifying and automating

the exploration, analysis, and comparison of I/O patterns

for Linux cryptographic ransomware. CRIBA supports non-

intrusive and comprehensive collection of I/O information

from ransomware samples and combines it with an integrated

analysis and visualization pipeline. The latter is enhanced

with 6 custom correlation algorithms and different pre-defined

dashboards. As shown in our experimental study, these features

are key to: i) automate the analysis of ransomware families; ii)
understand complex and intrinsic behavior from each sample;

iii) and pinpoint common and distinct traits across families.
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APPENDIX

A. Supported system calls

TABLE V: List of syscalls supported by CRIBA and corre-

sponding tags, used by the FSysSeq algorithm (§III-D).

Tag Syscall
AC accept, accept4
BD bind
CL close
CN connect
CR creat
FS fsync, fdatasync
GS getsockopt
GX getxattr, lgetxattr, fgetxattr
LS lseek
LT listen
LX listxattr, llistxattr, flistxattr
MK mknod, mknodat
OP open, openat
RC recvfrom, recvmsg
RD read, pread64, readv
RH readahead
RL readlink, readlinkat
RN rename, renameat, renameat2
RX removexattr, lremovexattr, fremovexattr
SD sendto, sendmsg
SK socket, socketpair
SS setsockopt
ST stat, lstat, fstat, fstatfs, fstatat
SX setxattr, lsetxattr, fsetxattr
TR truncate, ftruncate
UN unlink, unlinkat
WR write, pwrite64, writev

B. Dataset statistics
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Fig. 7: Distribution of file sizes and extensions for the dataset

used in §V (others aggregates extensions other than .vmem,

.vswp, .log, and .vdmk).

0 

500 

1 k

2 k

2 k

2 k

3 k

lo
g

vs
w

p
vm

dk
vm

em
(e

m
pt

y) gi
f

dl
l h

ht
m tx
t

cp
p

jp
g

ex
e

pd
b lib

m
p3 pd

f
ps

t
w

m
a

vh
d

pc
h sj
s

yw
r ijp tjl

N
u

m
b

e
r
 o

f 
fi

le
s

Extension

Fig. 8: Number of files with the top 25 file extensions from

the dataset used in §V.

C. Ransomware samples

TABLE VI: SHA256 hashes and execution commands for the

5 ransomware samples analyzed in §V.

Family SHA256 Command

AVOSLOCKER

d7112a1e1c68c366
c05bbede9dbe782b
b434231f84e5a72a
724cc8345d8d9d13

./avos.elf
1 /app/files

RANSOMEXX

08113ca015468d6c
29af4e4e4754c003
dacc194ce4a254e1
5f38060854f18867

./ransomexx.elf
--threads 1

--path /app/files

REVIL

3d375d0ead2b6316
8de86ca2649360d9
dcff75b3e0ffa2cf

1e50816ec92b3b7d

./revil.elf
--path /app/files

--threads 1

EREBUS

0b7996bca486575b
e15e68dba7cbd802
b1e5f90436ba23f8
02da66292c8a055f

./erebus.elf

DARKSIDE

c93e6237abf041bc
2530ccb510dd016e
f1cc6847d43bf023
351dce2a96fdc33b

./darkside.elf
--path /app/files
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D. CRIBA’s visualizations
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