Doctoral Program in Informatics (PDINF)
3 April 2024

Flexible Tracing and Analysis of
Applications’ 1/0 Behavior

Tania Esteves

Under the supervision of
Prof. Joao Paulo
Prof. Rui Oliveira

Data-centric and Distributed Systems

@ Critical services increasingly rely on efficient data access and processing

@ Complex architectures

> Large codebases
- Fluent Bit: =1M LoC, 5K files, 4 languages
- TensorFlow: >4M LoC, 20K files, 3K contributors

> Several components
> Complex interactions (e.g., replication)

Flexible Tracing and Analysis of Applications’ |/O Behavior

Data-centric and Distributed Systems

@ Critical services increasingly rely on efficient data access and processing

@ Complex architectures

> Large codebases

- Fluent Bit: =1M LoC, 5K files, 4 languages
- TensorFlow: >4M LoC, 20K files, 3K contributors
> Several components Healthcare

> Complex interactions (e.g., replication)

Flexible Tracing and Analysis of Applications’ |/O Behavior

Data-centric and Distributed Systems

@ Critical services increasingly rely on efficient data access and processing

@ Complex architectures
> Large codebases
- Fluent Bit: =1M LoC, 5K files, 4 languages
- TensorFlow: >4M LoC, 20K files, 3K contributors

> Several components Healthcare Financial
Services

> Complex interactions (e.g., replication)

Flexible Tracing and Analysis of Applications’ |/O Behavior

Data-centric and Distributed Systems

@ Critical services increasingly rely on efficient data access and processing

@ Complex architectures

> Large codebases

- Fluent Bit: =1M LoC, 5K files, 4 languages
- TensorFlow: >4M LoC, 20K files, 3K contributors

> Several components Healthcare Financial Retail
Services

> Complex interactions (e.g., replication)

Flexible Tracing and Analysis of Applications’ |/O Behavior

Data-centric and Distributed Systems

TensorFlow
@ Critical services increasingly rely on efficient data access and processing (" Training Libraries) (Inference Libraries |
(Python Client) (C++ Client)(j
@ Complex architectures HDFS s w
Metadata ~

Ops

> Large codebases
- Fluent Bit: =1M LoC, 5K files, 4 languages
- TensorFlow: >4M LoC, 20K files, 3K contributors

Metadata aster] Data Flow Executor

~

MatMul| | Conv2 || ReLU || Queue
nel Implementation

CPU || GPU || ...
Ler Device Layer

J

> Several components

> Complex interactions (e.g., replication) B0 Feplication |

DataNodes DataNodes
Rack 1 Rack 2

Flexible Tracing and Analysis of Applications’ |/O Behavior

Data-centric and Distributed Systems

TensorFlow
@ Critical services increasingly rely on efficient data access and processing (" Training Libraries) (Inference Libraries

(Python Client) (C++ Client)(

C AP

@ Complex architectures HDES

Metadata
Ops

AL UYL,

" La rge COdebaseS Metadata | aster } Data Flow Executor
- Fluent Bit: 1M LoC, 5K files, 4 languages o | MatMuchan — Queue§
- TensorFlow: >4M LoC, 20K files, 3K contributors

nel Implementation

CPU || GPU || ...
Ler Device Layer

J

> Several components

> Complex interactions (e.g., replication) B0 Feplication |

DataNodes DataNodes
Rack 1 Rack 2

Question: How can we ensure the correctness and good performance of these systems?

Flexible Tracing and Analysis of Applications’ |/O Behavior

Diagnosis Pipelines

@ Provide the collection, analysis and visualization of I/0 requests made by applications
@ Useful for:

> Debugging - uncover the root cause of errors, inefficiencies and unattained performance

> Validation - validate applications’ expected behaviors and the corrections of errors

> Exploration - understand how applications and storage systems handle data requests

Application Parser
AT t preprocesses Rackend
generates. acken queries _ : :
-)@(—/ stores (e.g., file, database) RIS Visualizer
/O requests Logs

Tracer accesses accesses

v Intercepts

[Resources]

(e.8., disk, network) Data Collection ‘ ‘ Data Analysis & Visualization

<

Flexible Tracing and Analysis of Applications’ |/O Behavior

Challenges

Flexible Tracing and Analysis of Applications’ |/O Behavior

Challenges

@ #1 - Transparency

> Provide transparent solutions that do not
require modifications to applications’
source code and are generally applicable

Flexible Tracing and Analysis of Applications’ |/O Behavior

Challenges

@ #1 - Transparency

> Provide transparent solutions that do not
require modifications to applications’
source code and are generally applicable

@ #2 - Accuracy and Overhead

> Balance the amount and detail of
collected data with the overhead
imposed on the targeted system

Flexible Tracing and Analysis of Applications’ |/O Behavior

Challenges

@ #1 - Transparency @ #3 - Analysis and Visualization
> Provide transparent solutions that do not > (Offer practical, integrated, and
require modifications to applications’ automated components for analyzing,
source code and are generally applicable correlating, and visualizing 1/0 requests

@ #2 - Accuracy and Overhead

> Balance the amount and detail of
collected data with the overhead
imposed on the targeted system

Flexible Tracing and Analysis of Applications’ |/O Behavior

Challenges

@ #1 - Transparency

> Provide transparent solutions that do not
require modifications to applications’
source code and are generally applicable

@ #2 - Accuracy and Overhead

> Balance the amount and detail of
collected data with the overhead
imposed on the targeted system

@ #3 - Analysis and Visualization

> Offer practical, integrated, and
automated components for analyzing,
correlating, and visualizing |/0O requests

® #4 - Scope

> Design comprehensive solutions for
diagnosing different kinds of |/0
behaviors

Flexible Tracing and Analysis of Applications’ |/O Behavior

Contributions

@ Content-aware Diagnosis with CaT

> Enables the collection and analysis of distributed systems' |/0 requests

@ Comprehensive and Flexible Diagnosis with DIO

> Provides customizable and insightful diagnosis of data-centric applications' storage [/0

@ Custom and Improved Analysis with CRIBA

> QOffers specialized and automated analysis of cryptographic ransomware |/0O behavior

Flexible Tracing and Analysis of Applications’ |/O Behavior

CO nte n't_ Awa re ® Collects requests’ context and content
D|agn OS'S @ Combines causality inference with data

similarity techniques

CAT, a framework for diagnosing ® Pinpoints data flow throughout the
/0 flow of distributed systems components of distributed systems

Flexible Tracing and Analysis of Applications’ |/O Behavior 6

CAT Design

eWMEED

D Falcon’s original component Falcon’s modified component D New components

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT Design

CATRACER
1 Collector

Y Hondler
8 SizComp_

<type, timestamp, pid, content, ...>

.....

D Falcon’s original component = = Falcon’s modified component D New components

lllll

@ CATRACER: Kernel-level tracer that collects information about |/O requests (events), including their content

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT Design

e i
Collector || -log .pcap - | i PROCESSOR
L1 1 :
) Handler | dog || pcap‘
5o || — [cus]]|
Catl_og ----------------------------------

<type, timestamp, pid, content, ...>

.....

D Falcon’s original component : Falcon’s modified component D New components

lllll

@ CATRACER: Kernel-level tracer that collects information about |/O requests (events), including their content
@®TRACE PROCESSOR: Parses and organizes events into different data structures

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT Design

lllllllllllllllllllllllllllll

CATRACER | 3 D O | i Trace HB
Collector || -log .pcap - | i PROCESSOR MODEL
L1 | : (GENERATO
Y rondler e | pcap\ i
) SigComp _ D_> ‘CatLog ” ‘ Solver Cﬁgggl
CatLog ----------------------------------

<type, timestamp, pid, content, id, order, dependencies, ...>

.....

D Falcon’s original component : Falcon’s modified component D New components

lllll

@ CATRACER: Kernel-level tracer that collects information about |/O requests (events), including their content
@®TRACE PROCESSOR: Parses and organizes events into different data structures
@®HB MOoODEL GENERATOR: Infers the causality between events

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT Design

lllllllllllllllllllllllllllll

CATRACER | (1 [0 [TRACE HB CASOLVER
Collector || -log .pcap - | i PROCESSOR MODEL
L1 | : (GENERATO
) Handler _ [e | pcap\
‘ “ ‘ oM1 Causal Similarity
3 _’ Latlog Solver Trace 7 Causal
CatLog ---------------------------------- Trace

<type, timestamp, pid, content, id, order, dependencies, similarities, ...>

.....

D Falcon’s original component : Falcon’s modified component D New components

lllll

@ CATRACER: Kernel-level tracer that collects information about |/O requests (events), including their content
@®TRACE PROCESSOR: Parses and organizes events into different data structures
@®HB MOoODEL GENERATOR: Infers the causality between events

®CASOLVER: Finds events with a high probability of operating over the same data flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT Design

CATRacer | [1 [0 TRACE HB CASOLVER §VISUALIZERQ;
Collector || -log .pcap - | i PROCESSOR MODEL Xy z
L1 1 5 GENERATO /2
Y Handler _ [log | pcap\ — — ?\8 .
| Similarity
% SizComp D—> [Catlog || \ Solver Tace Causal | | :
CatLOg ---------------------------------- Trace I I I

* *

<type, timestamp, pid, content, id, order, dependencies, similarities, ...>

.....

D Falcon’s original component : Falcon’s modified component D New components

lllll

@ CATRACER: Kernel-level tracer that collects information about |/O requests (events), including their content

@®TRACE PROCESSOR: Parses and organizes events into different data structures

@®HB MOoODEL GENERATOR: Infers the causality between events

®CASOLVER: Finds events with a high probability of operating over the same data flow

®VISUALIZER: Builds space-time diagrams representing the execution, the events’ causal relationship and their data flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

@ HDFS: Hadoop distributed file system composed of several DataNodes

DFS Client

@ Replication Process:

> (Clients send file(s) to one DataNode 1. Write data . 3 Ack

> DataNodes forward data to other nodes and then persist it on disk
DataNode 1

> The process is repeated until all DataNodes have the clients’ data

_ 2. Write data . 3. Ack
® 3 Test Scenarios:

DataNode 1

> Normal execution

> Storage corruption: data modified before being persisted 2. Writedata_y 1 3. Ack

> Network corruption: data modified before being transmitted DataNode 1

bt

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

CL DN3 DN2 DNT1

a) Normal execution

All DataNodes persist
client’s data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

DN3 DN2 DNT1

a) Normal execution

All DataNodes persist
client’s data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

a) Normal execution

All DataNodes persist
client’s data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

! RCV
(L) rev
(SND
O wr
" JWR

a) Normal execution

All DataNodes persist
client’s data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

DN3 DN2 CL DNT1

' RCV
() rev
{L) sND
WR
I WR
a) Normal execution b) Storage corruption
All DataNodes persist Data persisted by DataNode 2
client's data differs from clients’ data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

! RCV
(&) Rev
{ SND
© we
" JWR

a) Normal execution

All DataNodes persist
client’s data

@WR

b) Storage corruption

Data persisted by DataNode 2
differs from clients’ data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

' RCV
() Rov
{ SND
O
O ww

a) Normal execution

All DataNodes persist
client’s data

RCV
() rev
() snp
(2) wr

b) Storage corruption

Data persisted by DataNode 2
differs from clients’ data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

RCV
1 RCV
() snp
@ wr
(2) wr

! RCV
) RCV
{ SND

O w -
() wr :

a) Normal execution b) Storage corruption

All DataNodes persist Data persisted by DataNode 2
client's data differs from clients’ data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

DN D.N3 DINZ C.L Dll\l1

5 : : SND

) RCV : BEvV :

. :— RCV :

() sND :

&) wr i

O we e

WR
a) Normal execution b) Storage corruption c) Network corruption
All DataNodes persist Data persisted by DataNode 2 Data transmitted by DataNode

client's data differs from clients’ data 2 differs from clients’ data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

DN DN3 DN2 CL DN1
' RCV
;’:— RCV
&) wr
a) Normal execution b) Storage corruption c) Network corruption
All DataNodes persist Data persisted by DataNode 2 Data transmitted by DataNode
client's data differs from clients’ data 2 differs from clients’ data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT in Action

Storage and Replication of a file in HDFS

DN1 DN3 DN2 CL DII\I1
i JsnD
) RCV
(@) Rev
@ wr 5
© wr e
-@ Rcv
E E (@) rRev
. : l @) WR
WR © WR
a) Normal execution b) Storage corruption c) Network corruption
All DataNodes persist Data persisted by DataNode 2 Data transmitted by DataNode
client's data differs from clients’ data 2 differs from clients’ data

Flexible Tracing and Analysis of Applications’ |/O Behavior

CAT Summary

@ CAT’s content-aware approach enables the detection of data adulteration, corruption and
leakage patterns that would go unnoticed with state-of-the-art context-based solutions

@ Open challenges:

> Comprehensive diagnosis of applications

> Practical and efficient analysis pipeline

Flexible Tracing and Analysis of Applications’ |/O Behavior

® Supports 42 storage-related system calls

COmpI’ehenSIVe and O Colllects ;[jheif[type, ?rg:][nent;,] rel’iurn |
Flexible Diagnosis

DIO, a generic tool for diagnosing

applications’ storage |/O ® Includes an integrated pipeline for near
real-time analysis and visualization

® Provides different strategies to customize
the amount and detail of collected data

Flexible Tracing and Analysis of Applications’ /0 Behavior 11

DIO Design

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

Application

Syscalls

Storage Device

.-------------------'

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

Tracer

Application

v
©
Q
7
>

7p)

Storage Device

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

.-------------------'

--

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

Tracer

Syscalls

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

" Server1 ~‘:

Application Tracer :

: & Q- :

' 3 v '

& 220 attach :

' O ’ :

= :

: » 5

: © :

i O X

| (7)) |

N N I

: h :

v 9 .

S :

& :

e :

- _ 5 DIO’s tracer runs along the targeted
: Storage Device ' C L. . . .
! ; application, intercepting its syscalls

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

" ServerT \:
. Tracer :
i O :
) -2 attach ;
' O o :
y D ;
9 =
' :
@ :
: :
N : DIO’s tracer runs along the targeted
: : application, intercepting its syscalls
. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

Tracer

73 intercepts

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

" Server1 ~‘:

Application Tracer :

& (1 :

: 8 “““ N N :

L write(r read()y . attach :

E 5

x: :

D & :

@ :

e ,

- | : DIO’s tracer runs along the targeted
: Storage Device ' C L. . . .

! ; application, intercepting its syscalls

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

" Server1 ~‘:

. Application :

1 O anns®? :

E § S "‘“‘o‘ :

' D Rt <)) collect E

= : :

i :

D ® ;

& :

e :

- | : DIO’s tracer runs along the targeted
: Storage Device ' C L. . . .

! ; application, intercepting its syscalls

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

;'Server1 ~‘: '

Application Tracer : Backend

: S : E 5

' & st : '

o R) collect

= : :

i :

D ® :

& :

+ 9 : . . .

L 5 : Collected information is sent directly to

1 X . 1 .]

: Storage Device : the Backend component, which is

. K responsible for indexing and persisting it
. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

S s e EEEEEE=.

Collected information is sent directly to
the Backend component, which is
responsible for indexing and persisting it

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

S s e EEEEEE=.

Collected information is sent directly to
the Backend component, which is
responsible for indexing and persisting it

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

 EE I I I I I I N N Il Il Il N N Il Nl N N Il NNl NN NN NN NN NN NN BN BB

(0

--

Il = = N = N = N = Em =

As soon as the data reaches the
Backend, it becomes available for
visualization at the Visualizer

. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

Tracer —&
. ‘o-““" , send .
, “::{{{"“"‘\attach : ,
! " ¥ collect :
E ' Ring ‘ E E E
: Buffer : , :
' g " : : :
S : ‘ ,
& :
, © 73 intercepts :
L 5 : As soon as the data reaches the
1 X 1 .]
: Storage Device : Backend, it becomes available for
: ; visualization at the Visualizer
. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Design

Tracer @ @

: ‘on*““ . send .

: ﬂ;:{{'i‘:“‘“attach : ¢:

, o &P collect el e ittt

E O\ 5

: Buffer : : '

E " : , ' visualize

- : : :

| % : ‘s ________________ l'

3 :

, © 73 intercepts : _

F S : Users can query directly the backend and

1 X ! : : : :

: Storage Device : build correlation algorithms, or visually

: ; explore the data at the Visualizer
. DIO’s components =% DIO main flow App flow

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO in Action

Finding the root cause of RocksDB’s performance anomalies

@ RocksDB: An embedded key-value store
@ Problem: RocksDB clients observe high tail latency (1 & 3)

> Reproducible with db_bench benchmark

00 15:02 1504 1508 1508 1510 15112 15:14
Time (HH:MM)

99th percentile latency for RocksDB client operations.

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO in Action

Finding the root cause of RocksDB’s performance anomalies

@ RocksDB: An embedded key-value store
@ Problem: RocksDB clients observe high tail latency (1 & 3)

> Reproducible with db_bench benchmark

00 15:02 1504 1508 1508 1510 15112 15:14
Time (HH:MM)

99th percentile latency for RocksDB client operations.

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO in Action

Finding the root cause of RocksDB’s performance anomalies

@ RocksDB: An embedded key-value store
@ Problem: RocksDB clients observe high tail latency (1 & 3)

> Reproducible with db_bench benchmark

00 15:02 1504 1508 1508 =~ 1510 1512 15:14
Time (HH:MM)

99th percentile latency for RocksDB client operations.

Flexible Tracing and Analysis of Applications’ |/O Behavior

—~ =MD w
T =X k=X Kk=Xe)
|

Latency (ms)

DIO in Action ;

Finding the root cause of RocksDB’s performance anomalies

00 1502 15:04 1506 15:08 1510 1512 15:14
Time (HH:MM)

ro ksdb
:low0

ro ksdb
:lowl

ro ksdb
:low2

ro ksdb
:low3

ro ksdb
:low4

ro ksdb
:lowh

ro ksdb

r%clg]%db

Hevents

E

. RSERRSER,

SO o§ SO OO OO OO OO OO
8

£H00 B0 OO OO OO0 B0 B0 P00

OO0 OO OO OO OO OO OO OO
OO OO OO OO OO OO OO OO

ao @® ®© o o @®© @®© @®© @®© @®© @®© @® @®© @®

® D O 0 DO
=S _ Y O D At 25¢ D ¥ 0 >~ SePele® « 0 o .
0 00
‘)% oy (304 $ AT HL SR 100 DEOOQ NP8 © D OO ! Q N 5 0Q Q. RAo\oONR KOO0
h ()¢ b OV &C ﬂ:.o bl «e o. O 0.' o? 3 Co. . ‘o'o ‘o b ® (s* N e QIS O o LA o" 0 ™ 00 ® Q - o e NGO ROV U 00Y o“uo ®
db b %
enc U ® 5 HYOC ® ° A M) (e (o PLe o e ‘. ~ ‘o.o .’. LAl oo o) ®

OOOO) ..:".o 2y 23 ® Q ".. N ' Tou) !

| | | |
15:05 15:06 15:07 . 15:08 15:09
Time (HH:MM)

Syscalls issued by RocksDB over time, aggregated by thread name.

Flexible Tracing and Analysis of Applications’ |/O Behavior

STy .
7))
g3of | ©®]
=258 W N bl WMoY -
& 20H MM ATl WY]
. . 8 15- ”””””””””””””””””””””””” N V72 s, IO R N
3 1.0- 777777 - | 7: 7777777 L | 7777777 |7 2 7|7 777777| 77777 4 77777 | 7777777 7 L - L]
I I 15:00 15:02 15.04 15:06 15:08 15:10 15:12 15:14

Time (HH:MM)

Finding the root cause of RocksDB’s performance anomalies

Hevents
@)
S

E

O OO OO OO OO OO OO

> § OO
& }5

* %

’o 3

o 2 33
(o) O O

PRSP AP IS T S

- o"'“r" ?'o"' N oWicee ' v, 6 o "“ bod
OCQC
Q¢ T0Q t"(o) "‘o O\C 0 Nie Q

N ! 0 o‘

8
4
8
4
8
4
8
ow 4
8
4
8
4
8
4
8
4

| OO0 OO OO OO OO OO OO OO

Client

15:08 15:09

15:05 15:06 15:07 Time (HH:MM)

Syscalls issued by RocksDB over time, aggregated by thread name.

Flexible Tracing and Analysis of Applications’ |/O Behavior

STy .

7))

g3of | ©®]

=258 W N bl WMoY -

& 20H MM ATl WY]
. . 8 15- ”””””””””””””””””””””””” N V72 s, IO R N

3 1.0- 777777 - | 7: 7777777 L | 7777777 |7 2 7|7 777777| 77777 4 77777 | 7777777 7 L - L]
I I 15:00 15:02 15.04 15:06 15:08 15:10 15:12 15:14

Time (HH:MM)

Finding the root cause of RocksDB’s performance anomalies

ro ksdb
:low0

ro ksdb
:lowl

ro ksdb
:low2

ro ksdb
:low3

ro ksdb
:low4

OO OO OO OO OO OO

ro ksdb
:lowh

Hevents

. .:
i
4 [J

4>oof DO D0o0 oo oo DOO DO DO

OO0 00 OO OO OO OO OO OO

SO OS

0

. O ..0... ..o o - .0‘ (ST
% O Dt
OGS O B

15:05 15:06 15:07 15:08 15:09

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Flexible Tracing and Analysis of Applications’ |/O Behavior

—~ =MD w
T =X k=X Kk=Xe)
|
i

Latency (ms)

00 1502 15:04 1506 15:08 1510 1512 15:14

DIO in Action %

Finding the root cause of RocksDB’s performance anomalies

8000
4000
3000
é) 4000
3000
2 4000
S 3000
S 4000
3000
g 4000
O 8000
4000
800 GO o
6 _2000] Ay}
8000 |
4000
@® (<o) @ @® O o @® @® @® @® @® @® @ ® @
Q (4Q .° Q - ',.o. ..o". ‘ .?" .' Qu 00~ SRR EQASRON O.t'."t'o‘.‘ A 0.‘ ‘o‘“‘"' n JOR o.!.' s 0 d.“‘."‘ e o N e ole ’. o) (vg o.‘ PEOR
'e b OV 0 0 o . .“““ .3:0 ol BOQI O .'.'... o... o!o 1 .;..o 0.. ® 0". o .uu. 0“ .. .1. ‘.... bore'...:“ rr RORK () .‘ OOV U 008 .o‘.‘u.
i | | | |
15:05 15:06 15:07 15:08 15:09

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Flexible Tracing and Analysis of Applications’ |/O Behavior

—~ =MD w
T =X k=X Kk=Xe)
|
i

Latency (ms)

00 1502 15:04 1506 15:08 1510 1512 15:14

DIO in Action %

Finding the root cause of RocksDB’s performance anomalies

ro ksdb
:low0

ro ksdb
:lowl

ro ksdb
:low2

ro ksdb
:low3

ro ksdb
:low4

ro ksdb
:lowh

ro ksdb

r%clé%db

E

N RSERRSER,

) OO OO OO OO OO OO OO OO
%, B

£H00 B0 OO OO OO0 B0 B0 P00

OO0 OO OO OO OO OO OO OO
OO OO OO OO OO OO OO OO

ao (o) @ O O @ (o ®© @ ® ® @ @ @

o ® Q 0) D O e DO)

oo .‘.... 0 m .‘. . Qa .0‘. .0 ..'(G 0 .(o' e 4 0.;'. ';0.‘.0. O\ @ - ® o\%e ! 0.. . '.(“". . ~n QO O\0 (] e 0‘ O O.CQ.
19 Q 0 OC O R P X R 0 ool An

2 0 U (S ° ° °

SO0 U 0080
o & 5

15:05 15:06 15:07 15:08 15:09

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Flexible Tracing and Analysis of Applications’ |/O Behavior

STy -

7))

g3of | ©®]

=258 W N bl WMoY -

& 20H MM ATl WY]
. . 8 15- ”””””””””””””””””””””””” N V72 s, IO R y

3 1.0- 777777 - | 7: 7777777 L | 7777777 |7 2 7|7 777777| 77777 4 77777 | 7777777 7 L - L]
I I 15:00 15:02 15.04 15:06 15:08 15:10 15:12 15:14

Time (HH:MM)

Finding the root cause of RocksDB’s performance anomalies

8000
4000 69 e @55 Bg GM
3000
% 4000 SRR, MF“&SL
8000 0 (C(rg® s A ASRQ
.-g 4000 - L BSOSO O 68 &ss
S 3000
N 4000
8000 A0~
S 2000 ,.
O 3000
4000 . GRS
300 ..‘ RO D SR Q) |}
4000 : :
3000
4000
@ (o) @ O O @ (o ®© (o) ® (o)
Q e ‘ '.. ‘ o' - " 0 o ¥ o] - 1 .o!o' ."".0 :‘
db_bench 20000078 © - B QF Ry QU° p! < S5 M @ oolad™ sXeZe
10000 '
15:05 ’; " 15|06 15|O7 15|08 15|O9
' ' ' Time (HH:MM) ' '

Syscalls issued by RocksDB over time, aggregated by thread name.

» (1&3) Multiple background threads perform |/O simultaneously, dib_bench performance decreases

Flexible Tracing and Analysis of Applications’ |/O Behavior

STy -

7))

g3of | ©®]

=258 W N bl WMoY -

& 20H MM ATl WY]
. . 8 15- ”””””””””””””””””””””””” N V72 s, IO R y

3 1.0- 777777 - | 7: 7777777 L | 7777777 |7 2 N 777777| 77777 4 77777 | 7777777 7 L - L]
I I 15:00 15:02 15.04 15:06 15:08 15:10 15:12 15:14

Time (HH:MM)

Finding the root cause of RocksDB’s performance anomalies

3000
4000 SRS
3000
% 4000
3000 9
= 4000 .
S 3000
S 4000
3000 |
g 4000
O 8000 ;
4000 4
300 0 e |
4000 o 4
3000 ;
4000
“ o @2t © ®
db_bench 2000015 "3 RIBRogm®
10000

15:07 15:08

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

» (1&3) Multi
P (2&4) Few

Dle background threads

Dackground threads per

oerform /O simultaneously, db_bench

'orm |/O simultaneously, db_bench per

Flexible Tracing and Analysis of Applications’ |/O Behavior

nerformance decreases

‘ormance Improves

DIO in Action

Latency (ms)

T el

3}

o 1 2 e . . _
5 ,,,
O_ ,,,
5_ SR ™y AR I ™ I Y LR (RO 1 | N (B ' S [SNUPYRR » | SN P
'O- 777777 - | . 7777777 L . 7777777 Ii 2 7|7 I 77777 I 7777777 7 L - L]
15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14

Time (HH:MM)

Finding the root cause of RocksDB’s performance anomalies

rocksdb
:low0

rocksdb
:lowl

rocksdb
:lowZ2

rocksdb
low3
rocksdb
low4
rocksdb
:low5
rocksdb
:lowé
ksdb
"hight

oo O OO OO OO OO OO OO
=
0<%, B

£H00 B0 OO OO OO0 B0 B0 P00

OO0 OO OO OO OO OO OO OO
OO OO OO OO OO OO OO OO

O '
aro (L e S
0O

STRRESERSR,

: 00
"‘ “""w‘“('.“" ¥y "“.“‘.“‘..

@© (o @®©

0

(3 D DG
50 e To N® ®.%%e) o) (g .. BOC
) a’A’e D U 00N .o.“lo

|
15:07

Time (HH:MM)

15:08

Syscalls issued by RocksDB over time, aggregated by thread name.

Root Cause:

nterference between client writes, flushes and compactions

First observed in SILK (ATC’19) by instrumenting and manually inspecting more than 440K LoC

Flexible Tracing and Analysis of Applications’ |/O Behavior

DIO Summary

@ DIO enables the diagnosis of storage correctness, dependability and performance issues
and avoids the need for combining multiple tools and running the application multiple times

Fluent Bit Elasticsearch
|dentification of erroneous actions Top-down exploration

that lead to data loss and |/0 diagnosis

File access patterns

Diagnosis By observing the file access patterns, DIO shows that some files exhibit a constant access pattern, even in the absence of client requests. Namely, every 30 seconds Elasticsearch submits at least

Using DIO to analyze the application execution, we obtained the following information (see Figure 1): 2 system calls to the node. lock file (see Figure 2 - blue line). Moreover, every 2 minutes, 9 system calls to .es_temp_file file (see Figure 2 - pink line).

The client program (app) starts by creating the app. Log file, writing 26 bytes starting from offset o, and closing the file (@).

Then, Fluent Bit (fluent-bit) detects content modification at the file, opens it, and reads 26 bytes from offset o, which means that fluent-bit processes the full content previously written by app (@). . Jusrisharefelasticsearch-
Later, app removes the file with the untink sytem call(@). e 8.3.0-SNAP-

app then creates a new file with the same name as the previous one (app. log) and writes 16 bytes to it (@). Zi:la:?;g:;zgsemh_
fluent-bit opens the new log file for reading its content, but instead of reading from offset ¢, as expected, it starts reading at offset 26 (@).

By starting at the wrong offset, the read sytem call returns zero bytes and the 16 bytes written by app are lost.

File accesses throughtime @ Panel filters

o [[\ 8.3.0-SNAP-
2 \ [A N ‘ SHOT/data/node.lock

| | p @ /usr/share/elasticsearch-

. . . . [| \ [\ 8.3.0-SNAP-
M time v proc_name v syscall v retval v file_tag (dev_no|inode_no|timestamp) - offset 5 | / \ | BR SHOT/datal.es_temp_file

#events

10
1,677,439,564,679,653,376 app openat 3 7340032|12|288179679210684 - .
1,677,439,564,680,096,256 app write 26 7340032|12|288179679210684 0 ’
1,677,439,564,680,169,216 app close 0 7340032|12|288179679210684 - = time_retumed per 30 seconds
- Figure 2. Sample of Elasticsearch file accesses
1,677,439,568,884,327,424 fluent-bit openat 23 7340032|12|288179679210684 -
1,677,439,568,889,623,808 fluent-bit read 26 7340032|12|288179679210684 0 File access pattern for .es_temp_file
1677,439,568,892,033,792 fluent-bit read o 7340032|12|288179679210684 26 By analyzing in more detail the file access pattern for .es_temp_file, DIO shows that Elasticsearch performs always the same sequecence of system calls:
lstat-openat-write-openat-fsync-close-close-lstat-unlink (See Figure 3).
1,677,439,574,680,577,024 app unlink 0 - - 9
1,677,439,584,681,236,992 app openat 3 7340032|12|288199681097034 - close = fsync = stat = openat = unlink = write
1
1,677,439,584,681,385,216 app write 16 7340032|12|288199681097034 0
7]
1,677,439,584,681,463,040 app close 0 7340032|12|288199681097034 - b
[
1,677,439,588,884,341,248 fluent-bit openat 23 734003212|288199681097034 - 2
#*
1,677,439,588,884,896,000 fluent-bit Iseek 26 7340032(12|288199681097034 26 0
1,677,439,588,885,138,176 fluent-bit read 0 7340032|12|288199681097034 26 E 0 800 1,600 2,400 3,200 4,000 4,800 5,600 6,400 7,200 8,000
) execution time (microsecond)
1,677,439,604,704,586,752 fluent-bit close 0 7340032|12|288199681097034 -) ”)
Figure 3. File access pattern for .es_temp_file
Figure 1. Fluent Bit erroneous access pattern leading to data loss.

Flexible Tracing and Analysis of Applications’ |/O Behavior

Redis
Debugging and validation of
inefficient |/0 patterns

Log file access pattern

Shows the application accesses to the log file over time

Redis - V1 - Syscalls over time (per minute) ~ @ Panel filters Redis - V2 - Syscalls over time (per minute) @ Panel filters

1,200 1,200
1100 1100
1,000 1,000
900
800

700

#events

600

#events

500

400

N
o
L —
5 13:20

= lIIIII IIIII | | O
g -
13:35 13:40 45 13:50 13:55 0

time per minute July 23,2023

time per minute

openat H Iseek close
® write H o fstat ® writev openat
Log file access pattern (nanosecond visualization)
Shows the exact order of the system callls issued for the log file (in microseconds)
openat m write = Iseek m fstat = close = writev
1 D 1 Syscall: writev

ﬂ Syscall: write ﬂ,’ e

c Offset: 1095625 c Setfbss

(3 o

o 3

* 0 = 0

50 100 150 200 250 300 50 100 150 200 250 300
execution time (microsecond) execution time (microsecond)

DIO Summary

@ DIO enables the diagnosis of storage correctness, dependability and performance issues
and avoids the need for combining multiple tools and running the application multiple times

Fluent Bit
|dentification of erroneous actions
that lead to data loss

Diagnosis
Using DIO to analyze the application execution, we obtained the following information (see Figure 1):

The client program (app) starts by creating the app. Log file, writing 26 bytes starting from offset o, and closing the file (@).

Then, Fluent Bit (fluent-bit) detects content modification at the file, opens it, and reads 26 bytes from offset 8, which means that fluent-bit processes the full content previously written by app (@).
Later, app removes the file with the untink sytem call(@).

app then creates a new file with the same name as the previous one (app. log) and writes 16 bytes to it (@).

fluent-bit opens the new log file for reading its content, but instead of reading from offset ¢, as expected, it starts reading at offset 26 (@).

By starting at the wrong offset, the read sytem call returns zero bytes and the 16 bytes written by app are lost.

M time v proc_name v syscall v retval v file_tag (dev_no|inode_no|timestamp) - offset

1,677,439,564,679,653,376 app openat 3 7340032[12[288179679210684 -
1,677,439,564,680,096,256 app write 26 7340032|12|288179679210684 0

1,677,439,564,680,169,216 app close 0 7340032(12|288179679210684

1,677,439,568,884,327,424 fluent-bit openat 23 7340032|12|288179679210684
1,677,439,568,889,623,808 fluent-bit read 7340032|12|288179679210684

1,677,439,568,892,033,792 fluent-bit read 7340032|12|288179679210684

1,677,439,574,680,577,024 app unlink -

1,677,439,584,681,236,992 app openat 7340032|12|288199681097034

1,677,439,584,681,385,216 app write 7340032(12|288199681097034

1,677,439,584,681,463,040 app close 7340032|12|288199681097034

1,677,439,588,884,341,248 fluent-bit openat 7340032|12|288199681097034
1,677,439,588,884,896,000 fluent-bit Iseek 26 7340032|12|288199681097034
1,677,439,588,885,138,176 fluent-bit read 0 7340032|12|288199681097034

1,677,439,604,704,586,752 fluent-bit close 0 734003212|288199681097034

Figure 1. Fluent Bit erroneous access pattern leading to data loss.

Elasticsearch
Top-down exploration
and |/0 diagnosis

File access patterns

By observing the file access patterns, DIO shows that some files exhibit a constant access pattern, even in the absence of client requests. Namely, every 30 seconds Elasticsearch submits at least
2 system calls to the node. lock file (see Figure 2 - blue Iine). Moreover, every 2 minutes, 9 system calls to .es_temp_file file (see Figure 2 - pink \ine).

File accesses throughtime @ Panel filters

lusr/share/elasticsearch-
8.3.0-SNAP-
SHOT/logs/gc.log
lusr/share/elasticsearch-
8.3.0-SNAP-
SHOT/data/node.lock
lusr/share/elasticsearch-
8.3.0-SNAP-
SHOT/datal.es_temp_file

#events
.

time_returned per 30 seconds

Figure 2. Sample of Elasticsearch file accesses

File access pattern for .es_temp_ file

By analyzing in more detail the file access pattern for .es_temp_file, DIO shows that Elasticsearch performs always the same sequecence of system calls:
lstat-openat-write-openat-fsync-close-close-lstat-unlink (See Figure 3).

close = fsync = Istat m openat = unlink = write

#events

0
0 800 1,600 2,400 3,200 4,000 4,800 5,600 6,400 7,200 8,000

execution time (microsecond)
Figure 3. File access pattern for .es_temp_file

Flexible Tracing and Analysis of Applications’ |/O Behavior

Redis
Debugging and validation of
inefficient |/0 patterns

Log file access pattern

Shows the application accesses to the log file over time

Redis - V1 - Syscalls over time (per minute) ~ @ Panel filters Redis - V2 - Syscalls over time (per minute) @ Panel filters

1,200 1,200

1100 1100
1,000 1,000
900 900
80 800
2 70
5 o g 7
600 £
5 S 600
500 H
= 500

ha:30 13:35

3,2023

|
‘ |
o III.IIIII.I l l -
100 . E - — 1 200
0 =-- = -
13:35 13:40

13:45 13:50 13:55

time per minute

time per minute July 23,2023

openat Iseek close

® wite H o fstat ® writev openat

Log file access pattern (nanosecond visualization)

Shows the exact order of the system callls issued for the log file (in microseconds)

m openat m write = Iseek m fstat = close = writev
1 . 1 Syscall: writev
ﬂ Syscall: write ﬂ,’ .
c Offset: 1095625 c OUSSHUSS 02y
g g
[[
= 0 = 0
50 100 150 200 250 300 50 100 150 200 250 300

execution time (microsecond) execution time (microsecond)

DIO Summary

@ DIO enables the diagnosis of storage correctness, dependability and performance issues
and avoids the need for combining multiple tools and running the application multiple times

Fluent Bit
|dentification of erroneous actions
that lead to data loss

Diagnosis
Using DIO to analyze the application execution, we obtained the following information (see Figure 1):

« The client program (app) starts by creating the app. log file, writing 26 bytes starting from offset ¢, and closing the file ().

Then, Fluent Bit (fluent-bit) detects content modification at the file, opens it, and reads 26 bytes from offset 8, which means that fluent-bit processes the full content previously written by app (@).
Later, app removes the file with the untink sytem call(@).

app then creates a new file with the same name as the previous one (app. log) and writes 16 bytes to it (@).

fluent-bit opens the new log file for reading its content, but instead of reading from offset o, as expected, it starts reading at offset 26 (@).

By starting at the wrong offset, the read sytem call returns zero bytes and the 16 bytes written by app are lost.

M time v proc_name v syscall v retval v file_tag (dev_no|inode_no|timestamp) - offset
1,677,439,564,679,653,376 app openat 3 734003212(288179679210684 -
1,677,439,564,680,096,256 app write 26 7340032|12|288179679210684 0 +
1,677,439,564,680,169,216 app close 0 7340032|12|288179679210684 -
1,677,439,568,884,327,424 fluent-bit openat 23 734003212|288179679210684 -
1,677,439,568,889,623,808 fluent-bit read 26 7340032|12\288179679210684 0
1,677,439,568,892,033,792 fluent-bit read 0 7340032|12|288179679210684 26
1,677,439,574,680,577,024 app unlink 0 - - 9
1,677,439,584,681,236,992 app openat 3 7340032(12|288199681097034 -
1,677,439,584,681,385,216 app write 16 7340032|12|288199681097034 0
1,677,439,584,681,463,040 app close 0 7340032|12|288199681097034 -
1,677,439,588,884,341,248 fluent-bit openat 23 7340032|12|288199681097034 -
1,677,439,588,884,896,000 fluent-bit Iseek 26 7340032|12(288199681097034 26
1,677,439,588,885,138,176 fluent-bit read 0 7340032(12|288199681097034 26 e
1,677,439,604,704,586,752 fluent-bit close 0 7340032|12\288199681097034 -

Figure 1. Fluent Bit erroneous access pattern leading to data loss.

Elasticsearch
Top-down exploration
and |/0 diagnosis

g .
. File access patterns

" By observing the file access patterns, DIO shows that some files exhibit a constant access pattern, even in the absence of client requests. Namely, every 30 seconds Elasticsearch submits at least
. 2 system callls to the node. lock file (see Figure 2 - blue line). Moreover, every 2 minutes, 9 system calls to .es_temp_file file (see Figure 2 - pink line).

File accesses throughtime @ Panel filters

® /usr/share/elasticsearch-
8.3.0-SNAP-
SHOT/logs/gc.log

@ /usr/share/elasticsearch-
8.3.0-SNAP-
SHOT/data/node.lock

@ /ust/share/elasticsearch-
8.3.0-SNAP-
SHOT/datal.es_temp_file

#events

time_returned per 30 seconds
Figure 2. Sample of Elasticsearch file accesses
b
. File access pattern for .es_temp_ file
. By analyzing in more detail the file access pattern for .es_temp_file, DIO shows that Elasticsearch performs always the same sequecence of system calls:
’"
b Lstat-openat-write-openat-fsync-close-close-lstat-unlink (See Figure 3).

m close = fsync = Istat = openat = unlink = write

#events

1,600 2,400 3,200 4,000 4,800 5,600 6,400 7,200
execution time (microsecond)
Figure 3. File access pattern for .es_temp_file

Flexible Tracing and Analysis of Applications’ |/O Behavior

Redis
Debugging and validation of
inefficient |/0 patterns

Log file access pattern

Shows the application accesses to the log file over time

Redis - V1 - Syscalls over time (per minute) ~ @ Panel filters Redis - V2 - Syscalls over time (per minute) @ Panel filters

1,200 1,200

1100
1,000

900

#events

#events

o ;
e “ EEEEEEEEEE__=
13:35 13:40 l13:45 13:50

time per minute July 23,2023

13
July 23,2023

time per minute
® openat s Iseek p

® wite H o fstat H ® writev ® openat

Log file access pattern (nanosecond visualization)

Shows the exact order of the system callls issued for the log file (in microseconds)

m openat m write = Iseek m fstat = close = writev

Syscall: write Syscall: writev
Offset: 1095625 | ‘ ‘ Offset: 1587020 ‘ ‘
00

100 150 200 250 100 150 2 250
execution time (microsecond) execution time (microsecond)

Custom and

® Supports the collection of 13 network-

|m pr()\/ed Ana |yS|S related system calls and system metrics

. . ® Enhances the analysis process with 6
CRlBA’ a tool for dlagnosmg the correlation algorithms and 8 dashboards
|/O behavior of Linux tailored for ransomware characterization

cryptographic ransomware

Flexible Tracing and Analysis of Applications’ /0 Behavior 16

Cryptographic Ransomware

@ Malicious software that encrypts victim’'s data and demands a ransom
@ New ransomware families are constantly appearing

@ CRIBA allows the observation of characteristic ransomware behavior:

> Traverses all victims' directories

> Rewrites victims' files with encrypted data

> Adds a new file extension to encrypted files

> |eaves ransom notes to inform the victim

> Has high CPU consumption due to encryption algorithms

Ol e

Flexible Tracing and Analysis of Applications’ |/O Behavior

CRIBA in Action

@ Study with 5 different Linux cryptographic ransomware families

Flexible Tracing and Analysis of Applications’ |/O Behavior

CRIBA in Action

@ Study with 5 different Linux cryptographic ransomware families

@ Total of 26 different observations regarding generic statistics, ransom notes creation, data
access and encryption patterns, and evasion techniques

Flexible Tracing and Analysis of Applications’ |/O Behavior

CRIBA in Action

@ Study with 5 different Linux cryptographic ransomware families

@ Total of 26 different observations regarding generic statistics, ransom notes creation, data
access and encryption patterns, and evasion techniques

> Metadata-related operations are the most predominant (Iseek, stat, fstat

Flexible Tracing and Analysis of Applications’ |/O Behavior

@ openat @stat @ fstat @ Iseek @ read @ write @ close @ rename

CRIBAin Action =-
S
‘:é 5 I

@ Study with 5 different Linux cryptoy & I I I I I I I I I

@ Total of 26 different observations regarding generic statistics, ransom notes creation, data
access and encryption patterns, and evasion techniques

> Metadata-related operations are the most predominant (Iseek, stat, fstat

> Concurrent encryption actions in RANSOMEXX that may lead to data corruption

Flexible Tracing and Analysis of Applications’ |/O Behavior

CRIBA in Action

@ Study with 5 different Linux cryptographic ransomware families

@ Total of 26 different observations regarding generic statistics, ransom notes creation, data
access and encryption patterns, and evasion techniques

> Metadata-related operations are the most predominant (Iseek, stat, fstat)
> Concurrent encryption actions in RANSOMEXX that may lead to data corruption

> Different system call sequences for file access (based on the targeted file)

Flexible Tracing and Analysis of Applications’ |/O Behavior

syscall
O read

CRIBA in Action g e

W W W
@ B\ I
|
|
|
|

NN N DN
oON A~ O O

Qo

T

@ Study with 5 different Linux cryptographic ransomv

offset (MB)

N OO OO DN PO

@ Total of 26 ditferent observations regarding generic
access and encryption patterns, and evasion techn

> Metadata-related operations are the most pre

]]
u u . 1 . \
> Concurrent encryption actions in RANSOME, 209" g™ e‘eb\—\ja‘\some** e\t

-

> Different system call sequences for file access (based on the targeted file)

> Some families process only partial content of files or target specific file extensions

Flexible Tracing and Analysis of Applications’ |/O Behavior

CRIBA Summary

@ CRIBA highlights DIO’s usefulness by extending it with tailored analysis and visualization

@ Our study shows that different features must be considered for a clear understanding of
ransomware’s intrinsic behavior

@ This knowledge is key for improving detection tools for Linux cryptographic ransomware

Flexible Tracing and Analysis of Applications’ |/O Behavior

Conclusion

@ CAT, a framework for diagnosing storage and network |/0 requests of distributed systems
> Follows a content-aware approach that allows observing how data flows across components
> Useful for uncovering data corruption and adulteration issues

@ DI0, a generic tool for diagnosing data-centric applications’ storage |/0
> Provides the flexibility to narrow or broaden the collection, analysis and visualization of I/O behaviors
> Useful for debugging, validating and exploring both known and unknown storage patterns

@ CRIBA, a practical tool for characterizing the 1/0 behavior of cryptographic ransomware
> Automates the analysis and visualization of specific ransomware behaviors

> Useful for better understand ransomware attacks and enhance detection tools

Flexible Tracing and Analysis of Applications’ |/O Behavior

Publications

Core Publications

@ Tania Esteves, Francisco Neves, Rui Oliveira and Joao Paulo. “CaT: Content-aware Tracing and Analysis of Distributed
Systems”. In 22nd International Middleware Conference, 2021.

@ Tania Esteves, Ricardo Macedo, Rui Oliveira and Joao Paulo. “Diagnosing Applications’ I/O Behavior through System Call
Observability”. In 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, 2023.

@ Tania Esteves, Bruno Pereira, Rui Pedro Oliveira, Joao Marco and Joao Paulo. “CRIBA: A Tool for Comprehensive Analysis of
Cryptographic Ransomware’s I/0O Behavior”. In 42nd Symposium on Reliable Distributed Systems, 2023.

@ Tania Esteves, Ricardo Macedo, Rui Oliveira and Joao Paulo. “Toward a Practical and Timely Diagnosis of Applications’ I/O
Behavior”. In /[EEE Access, 2023.

Complementary Publications

@® Mariana Miranda, Tania Esteves, Bernardo Portela and Joao Paulo. “S2Dedup: SGX-enabled Secure Deduplication”. In 74th
ACM International Conference on Systems and Storage, 2021.

@ Tania Esteves, Ricardo Macedo, Alberto Faria, Bernardo Portela, Joao Paulo, Jose Pereira and Danny Harnik. “TrustFS: An SGX-
enable Stackable File System Framework”. In 38th International Symposium on Reliable Distributed Systems Workshops, 2019.

Flexible Tracing and Analysis of Applications’ |/O Behavior

